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Abstract
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insurance are jointly determined by risk preferences and the preference over the timing of

uncertainty resolution. We cover higher-order risk effects and examine risk averters and

risk lovers. When decision-makers use several instruments simultaneously, substitutive in-

teraction effects arise. We quantify precautionary and substitution effects numerically and

discuss the role of instrument interaction for the inference of preference parameters from
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1 Introduction

The idea that uncertainty about future income raises saving goes back to Keynes and Hicks

and was first analyzed theoretically in the late 1960s by Leland (1968), Sandmo (1970) and

Drèze and Modigliani (1972). Decision-makers who behave in this way are called prudent.

Ever since Kimball’s (1990) seminal paper, we know that prudence has a simple and intuitive

characterization in the additively separable expected utility model: a convex marginal utility

of future consumption, u′′′ ≥ 0. The notion of prudence and precautionary motives more

generally play important roles in microeconomics, macroeconomics and asset pricing.

In this paper, we analyze precautionary behavior and its underlying preferences in a model

that disentangles risk and time. In particular, we follow Kimball and Weil (2009) and embrace

recursive utility proposed by Kreps and Porteus (1978) and Selden (1978). We then study

various tools that decision-makers can use to react to uncertainty, which we call instruments,

and consider saving but also self-protection and self-insurance (see Ehrlich and Becker, 1972).

We derive a unifying result on how risk preferences and the preference over the timing of

uncertainty resolution jointly determine prudent or imprudent behavior. For generality, we

include higher-order risk effects (see Eeckhoudt and Schlesinger, 2006, 2008; Noussair et al.,

2014) and examine the behavior of both risk averters and risk lovers (see Crainich et al., 2013;

Deck and Schlesinger, 2014). Our findings encompass most existing results as special cases

when a single decision variable captures precautionary motives.

When decision-makers use several instruments at a time, which appears to be the empiri-

cally relevant case, interaction effects arise and general predictions about precautionary mo-

tives are difficult. Therefore, we supplement our theoretical results with a detailed numerical

analysis. Instruments differ in the intensity of precautionary motives and their susceptibil-

ity to substitution effects. In our setting, precautionary self-protection can be decreasing in

income risk precisely because decision-makers also engage in saving and self-insurance. This

highlights that the link between preferences and precautionary motives critically depends on

the portfolio of instruments used by the decision-maker. Interaction effects can distort the in-

ference of preference parameters from precautionary behavior, and the size of this distortion

can be large. Explaining low levels of precautionary self-protection or precautionary self-

insurance may require preferences with negative values for relative prudence because saving

absorbs most of the precautionary response. From a practical perspective, instruments differ

in how well they are suited to infer preferences from precautionary motives.

Our analysis is motivated by recent interest in instruments other than saving that are sub-

ject to precautionary income risk effects. We draw on Ehrlich and Becker’s (1972) distinction

between self-protection, a costly activity to reduce the probability of loss, and self-insurance,

a costly activity to reduce the severity of loss.1 Eeckhoudt et al. (2012), Courbage and Rey

1 Courbage et al. (2013) review the literature on self-protection and self-insurance and give many examples.
Our model includes any safety investment that households make to mitigate property and liability risks.
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(2012) and Wang and Li (2015) analyze precautionary self-protection effort as a characteriz-

ing trait for prudence, much like precautionary saving, suggesting self-protection as a viable

alternative to identify precautionary preferences. They use the additively separable expected

utility model, which collapses relative risk aversion and the resistance to intertemporal sub-

stitution of consumption.2 A few studies have also looked at precautionary (self-)insurance

in atemporal expected utility settings (see Eeckhoudt and Kimball, 1992; Fei and Schlesinger,

2008) or in the additively separable expected utility model (Wang et al., 2015; Wong, 2016).

As argued by Kimball and Weil (2009), this model does not allow us to ask questions “that

are fundamental to the understanding of consumption in the face of labor income risk,” which

is why we embrace recursive utility to disentangle risk preferences from time preferences. We

can then distinguish between a preference for late versus early resolution of uncertainty, which

matters descriptively (e.g., von Gaudecker et al., 2011) and also turns out to affect our results.

Labor income risk reduces (increases) certainty equivalent consumption for risk averters (risk

lovers), which stimulates precautionary behavior for decision-makers who prefer a late (early)

resolution of uncertainty. If risk preferences satisfy mutual aggravation of risk increases (see

Eeckhoudt et al., 2009; Ebert et al., 2018), the marginal value of risk reduction increases

and prudent behavior arises. Our results organize, unify and extend existing results about

precautionary saving, self-protection and self-insurance under recursive utility.

This commonality raises the question about precautionary behavior when decision-makers

use several instruments at a time to respond to income risk. In this regard, our paper is related

to the literature on precautionary saving with endogenous labor supply. Based on a calibrated

life-cycle model, Low (2005) finds that labor-supply flexibility leads to more borrowing when

young and more precautionary saving for the middle-aged. Flodén (2006) finds greater pre-

cautionary saving with endogenous labor supply in a two-period model with a utility function

that satisfies balanced growth. Nocetti and Smith (2011) extend Flodén’s results to recursive

utility and large income risks. Under plausible conditions, the complementarity between sav-

ing and labor supply outweighs the hedging effect of labor-supply flexibility.3 In the case of

saving, self-protection and self-insurance considered here, substitution effects arise and dimin-

ish the precautionary use of each instrument. In our numerical analysis, these substitution

effects can be so large as to outweigh precautionary effects and thus lead to precautionary

disinvestment, even for plausible choices of preference parameters and risk levels.

Insurance demand arises as a special case of self-insurance and thus yields additional examples.

2 The only exception we are aware of is Wang et al. (2019), who analyze precautionary self-protection with
Kreps-Porteus/Selden preferences. Unlike this paper, they do not consider other instruments, interaction
effects, or the inference of preference parameters from precautionary motives.

3 A rich literature that is too extensive to be fully summarized here, has studied precautionary responses to
income risk under incomplete markets. Zeldes (1989) derives closed-form solutions for optimal consumption
with stochastic labor income, Deaton (1991) analyzes the effect of liquidity constraints on precautionary
saving, and Gourinchas and Parker (2002) estimate a structural model to decompose saving into its precau-
tionary and life-cycle components. Low et al. (2010) distinguish between different types of labor income risk
and Heathcote et al. (2014) use labor supply decisions to quantify risk sharing of idiosyncratic shocks.
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Interaction effects arise for joint saving and insurance decisions as well. In a two-period

model with non-separable utility, saving and insurance are pure substitutes in the Hicks sense

when the utility function satisfies decreasing temporal risk aversion (Dionne and Eeckhoudt,

1984). Based on continuous time life-cycle models, Briys (1986, 1988) shows that consumption

and insurance decisions are only separable under restrictive assumptions on the utility func-

tion, and Gollier (1994, 2003) finds that precautionary wealth accumulation may dominate

insurance in the long-run.4 A number of empirical studies confirm the relationship between

saving and insurance, and document lower levels of precautionary saving when individuals

are more comprehensively insured (see Gruber and Yelowitz, 1999; Engen and Gruber, 2001;

Chou et al., 2003).5 We provide a preference-based foundation of these interaction effects

and show that they arise for any combination of instruments that trade off current consump-

tion against (expected) future consumption. The case of saving and insurance represents a

prominent example but the underlying mechanism generalizes considerably.

Conceptually, our paper also contributes to the literature on the prevalence and strength

of precautionary motives in the field and the underlying preferences. This literature finds

a variety of results and faces some methodological challenges. Based on the Consumer Ex-

penditure Survey Data, Dynan’s (1993) largest point estimate for relative prudence is 0.312.

She concludes that “[w]e cannot reject the hypothesis that the coefficient of relative prudence

is zero.”6 Merrigan and Normandin (1996) find relative prudence ranging from 1.78 to 2.33

based on longitudinal expenditure data from the UK. Eisenhauer (2000) states a range from

1.51 to 5.15 using survey data on life insurance, and Eisenhauer and Ventura (2003) report

values from 7.32 to 8.65 based on hypothetical choices. In a survey of the empirical literature,

Lugilde et al. (2019) point out the lack of consensus regarding the intensity of the precaution-

ary saving motive. The presence of multiple instruments may further contribute to the issue.

When decision-makers respond to income risk broadly by adjusting several behaviors, substi-

tution effects diminish the amount of precautionary saving, self-protection and self-insurance.

Especially in the field, decision-makers may differ in the portfolio of instruments they use to

respond to income risk. In our setting, precautionary saving is fairly robust to substitution

effects but precautionary self-protection and self-insurance are quite susceptible. This makes

them less suited to infer precautionary preferences even though, at a qualitative level, they

4 Somerville (2004) modifies Briys’ approach to study the dynamic effects of the loss probability on precau-
tionary saving. His results corroborate the role of interaction effects between saving and insurance decisions.

5 Starr-McCluer (1996) finds the opposite, that US households covered by health insurance save more than
uninsured households. Hsu (2013) reconciles this with the theory by considering institutional factors such
as safety nets and employer-provided insurance.

6 Similarly, Skinner (1988), Kuehlwein (1991), Guiso et al. (1992) and Parker (1999) find little to no evidence
of precautionary saving and therefore, per implication, little to no evidence of prudence. Lee and Sawada
(2007) argue that Dynan’s low estimates for relative prudence are due to an omitted-variable bias caused by
the lack of liquidity constraints when deriving the Euler equation. More generally, Carroll (2001), Ludvigson
and Paxson (2001) and Feigenbaum (2005) question the way in which Euler equations are approximated for
purposes of estimation in this literature.
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are subject to the same trade-offs as precautionary saving.

We proceed as follows. Section 2 introduces preferences, instruments and ordering relations

for comparative statics. Section 3 analyzes precautionary motives when decision-makers use

a single instrument. Section 4 covers interaction effects between instruments. Section 5

presents a detailed numerical analysis of precautionary motives. Section 6 discusses the role

of instrument interaction for the inference of preference parameters. Section 7 concludes.

2 Preferences, instruments and ordering relations

We consider a decision-maker (DM) who lives for two periods. Her intertemporal consumption

stream (c1, c̃2) consists of certain consumption c1 in the first period and risky consumption c̃2

in the second period, with a tilde indicating a random variable. Preferences over consumption

are represented by the following recursive utility (RU) objective,

u(c1) + βu
(
ψ−1 (Eψ(c̃2))

)
, (1)

see Kreps and Porteus (1978) and Selden (1978). In this representation, u measures the DM’s

preference to smooth consumption over time, β is her utility discount factor and ψ measures

risk preferences.7 Both u and ψ are assumed to be strictly increasing and concave for now.

When convenient, we denote the certainty equivalent of future consumption by

CE(c̃2) ≡ ψ−1 (Eψ (c̃2)) .

The DM receives a certain amount of income w1 in the first period and w2 in the second

period. Consumption in the second period is risky due to the possibility of a monetary loss

of size L that occurs with probability p ∈ (0, 1). We denote this loss risk ˜̀. Besides the loss

risk, an additional source of uncertainty in the second period is income risk. We model it as

an additive zero-mean background risk ε̃ with support [ε, ε]. In the presence of the income

risk, second-period income is given by w̃2 = w2 + ε̃, instead of w2. Assuming ε̃ with mean

zero allows us to focus on the pure risk effects on behavior. For tractability, we consider the

loss risk and the income risk to be independent.

Three instruments allow the DM to modify her intertemporal consumption stream. We

introduce them in the following definition.

Definition 1 (Instruments).

- Saving s transfers income from the first to the second period at gross interest rate R.

- Self-protection is an upfront investment x that reduces the probability of loss to p(x).

- Self-insurance is an upfront investment y that reduces the severity of loss to L(y).

7 A well-known special case is Epstein and Zin’s (1991) specification with iso-elastic u and ψ functions.
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Each instrument involves an upfront cost, which reduces consumption in the first period,

at the benefit of higher expected consumption in the second period. The instruments differ in

the way they induce this increase in expected consumption. Saving raises consumption in each

state in the second period, thereby providing a buffer against uncertainty. Self-protection and

self-insurance instead affect the loss risk directly (Ehrlich and Becker, 1972). Self-protection

reduces the expected loss in the second period by lowering the probability of loss without

affecting its size. Self-insurance reduces the expected loss by lowering the magnitude of loss

without altering its likelihood. Courbage et al. (2013) and the papers cited therein provide

many specific examples of these economic activities. In practice, DMs invest in safety to

mitigate property and liability risks arising from vehicle and home ownership. They also

purchase insurance to reduce retained losses, which fits our definition of self-insurance. While

the distinction between self-protection and self-insurance may appear stylized, it has helped

uncover several differences in their comparative statics, most notably when it comes to risk

aversion (e.g., Dionne and Eeckhoudt, 1985).

To gain intuition, we compare how the three instruments affect the risk exposure in the

second period. Specifically, we state their effect on the first three moments of second-period

consumption, see Online Appendix C.1 for a proof. We denote the standard deviation and

skewness of a random variable by σ and sk. While risk preferences are not moment preferences,

such a comparison can provide useful intuition. The following remark summarizes.

Remark 1.

- Saving increases Ec̃2, but leaves σ(c̃2) and sk(c̃2) unaffected.

- Self-protection increases Ec̃2; it reduces σ(c̃2) if and only if p(x) < 0.5. For σ(ε̃)sk(ε̃) >

−2
3L(y), there is a threshold p1 such that self-protection increases sk(c̃2) if p(x) < p1.

- Self-insurance increases Ec̃2 and reduces σ(c̃2); it increases sk(c̃2) if and only if p(x) <

0.5(1 + σ(ε̃)sk(ε̃)/L(y)).

For optimization, we use methods of monotone comparative statics, following recent con-

tributions in the economic analysis of risk (e.g., Nocetti, 2016; Wang and Li, 2015, 2016;

Wang et al., 2015; Wong, 2016). This approach overcomes the narrow focus on interior solu-

tions and unique maximizers, which often entails additional restrictions on the primitives to

ensure global concavity of the objective function. In the absence of second-order conditions,

optimal decisions are not necessarily singletons but may be set-valued. To compare objective

functions, we use Quah and Strulovici’s (2009) so-called interval-dominance order.

Definition 2 (Interval Dominance Order). Let f and g be two real-valued functions defined

on Z ⊂ R. We say that g dominates f by the interval dominance order, denoted g �I f , if

f(z′′)− f(z′) ≥ (>) 0 ⇒ g(z′′)− g(z′) ≥ (>) 0
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holds for z′′ and z′ such that z′′ > z′ and f(z′′) ≥ f(z) for all z in the interval [z′, z′′] ≡ {z ∈
Z : z′ ≤ z ≤ z′′}.

Ranking objective functions by the interval-dominance order is less restrictive than al-

ternative ordering concepts but still allows for simple proofs.8 Quah and Strulovici’s (2009)

Proposition 1 characterizes the interval-dominance order for continuous and piecewise mono-

tone functions. A function f : Z → R is regular if arg maxz∈[z′,z′′] f(z) is nonempty for any

points z′ and z′′ with z′′ > z′. For later reference, we state their comparative static result.

Theorem 1 (Quah and Strulovici, 2009). Suppose that f and g are real-valued functions

defined on Z ⊂ R and g �I f . Then,

arg max
z∈J

g(z) ≥S arg max
z∈J

f(z) for any interval J of Z. (2)

Furthermore, if (2) holds and g is regular, then g �I f .

The comparison between the maximizers of g and f in condition (2) is stated in terms

of the strong set order, denoted by ≥S . For two subsets Z ′ and Z ′′ of R, Z ′′ is larger than

Z ′ in the strong set order if, for any z′′ ∈ Z ′′ and z′ ∈ Z ′, we have max{z′′, z′} ∈ Z ′′ and

min{z′′, z′} ∈ Z ′. If both sets are singletons, Z ′′ = {z′′} and Z ′ = {z′}, then Z ′′ ≥S Z ′

collapses to the usual z′′ ≥ z′. More generally, if both sets contain their largest and smallest

elements, then Z ′′ ≥S Z ′ implies maxZ ′′ ≥ maxZ ′ and minZ ′′ ≥ minZ ′.

3 Precautionary behavior with a single instrument

3.1 Saving

We first investigate precautionary saving. In the benchmark without income risk, the DM

maximizes objective function

U(s; 0) = u(w1 − s) + βu
(
CE(w2 + sR+ ˜̀))

over s ∈ [−(w2 − L)/R,w1]. In the presence of income risk, she maximizes

U(s; ε̃) = u(w1 − s) + βu
(
CE(w̃2 + sR+ ˜̀)) ,

over s ∈ [−(w2 + ε− L)/R,w1]. Saving is the DM’s only instrument for now, and therefore

the loss risk has a fixed probability and severity.

We call the DM prudent if the maximizers of U(s; ε̃) are larger than the maximizers of

U(s; 0) in the strong set order, and imprudent if the reverse ordering holds. A prudent DM is

8 Increasing differences and the single-crossing condition each imply interval dominance. Quah and Strulovici
(2009) provide an explicit example to show that the interval-dominance order is less restrictive than the
single-crossing property. Quah and Strulovici (2007) and Sobel (2019) compare all these ordering relations.
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said to engage in precautionary saving because income risk raises her optimal saving choice(s)

in the sense of the strong set order. Proposition 1 presents sufficient conditions.

Proposition 1. Consider the effect of income risk on optimal saving. The DM is:

(i) prudent if ψ′ is convex and u is more concave than ψ;

(ii) imprudent if ψ′ is concave and u is less concave than ψ.

We provide a proof in Appendix A.1. The stated conditions allow us to rank U(s; ε̃)

and U(s; 0) by the interval dominance order and then apply Theorem 1. The conditions in

result (i) are well-known in the consumption-saving literature under RU (see Kimball and

Weil, 2009; Gollier, 2001; Wang and Li, 2016). Proposition 1 shows that they also apply to

situations where income risk represents an additional source of uncertainty because a loss risk

is already present. The ordering of the maximizers can be either way around so that both

prudent and imprudent behavior are possible. Table 1 provides an overview.

ψ′′′ ≥ 0 ψ′′′ ≤ 0

u more concave than ψ prudence indeterminate

u less concave than ψ indeterminate imprudence

Table 1: Sufficient conditions for prudence and imprudence under RU

The conditions combine Kimball’s (1990) prudence condition, ψ′′′ ≥ 0, from the additively

separable expected utility model, with the relative curvature of u and ψ, a measure of the

DM’s attitude towards the timing of uncertainty resolution. If u is more (less) concave than ψ,

the DM prefers a late (early) resolution of uncertainty, see Proposition 77 in Gollier (2001).

Using real incentives, von Gaudecker et al. (2011) find the preference for early versus late

resolution of uncertainty evenly split in a representative sample of the Dutch population.

For intuition, we analyze how income risk affects the marginal benefit of saving under RU,

βR
u′(CE(c̃2))

ψ′(CE(c̃2))
Eψ′(c̃2).

There are two channels, a certainty equivalent (CE) channel and a marginal expected utility

(MEU) channel, see Bostian and Heinzel (2020). With a concave ψ, income risk lowers CE in

u′(CE(c̃2)), which raises the marginal value of saving for reasons of consumption smoothing.

At the same time, income risk changes the sensitivity of CE with respect to saving, which

is given by dCE/ds = Eψ′(c̃2)/ψ′(CE(c̃2)). If ψ′ is convex, saving raises CE by more when

income risk is present and the numerator of dCE/ds increases. This represents a positive

MEU effect. At the same time, income risk raises ψ′(CE(c̃2)), the denominator of dCE/ds,

which makes CE less sensitive to saving. If u is more concave than ψ, this negative effect is
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outweighed by the positive consumption smoothing effect. In this case, the net effect of the

CE channel is positive.

The literature on precautionary saving under RU has identified another condition for

prudence (see Kimball and Weil, 2009). If income risk is the only source of uncertainty and ψ

exhibits decreasing absolute risk aversion (DARA), the DM accumulates precautionary saving

under RU without any restrictions on her felicity function u other than concavity. If a loss

risk is already present, DARA of ψ is no longer strong enough and we need to impose a more

restrictive assumption, namely constant absolute risk aversion (CARA).

Remark 2. The DM is prudent for any concave felicity function u if ψ has CARA.

We provide a proof in Appendix A.2. Intuitively, if ψ satisfies CARA, the additive income

risk ε̃ is multiplicatively separable both in terms of expected utility and expected marginal

utility. As a result, it does not affect the sensitivity of CE with respect to saving. In technical

terms, the ratio Eψ′(c̃2)/ψ′(CE(c̃2)) is unaffected by income risk and its only effect is a smaller

CE, which stimulates saving for reasons of consumption smoothing.

3.2 Self-protection and self-insurance

We now turn to precautionary self-protection and precautionary self-insurance. For self-

protection, the DM’s objective function is given by

U(x; 0) = u(w1 − x) + βu
(
CE(w2 + ˜̀))

in the absence of income risk and by

U(x; ε̃) = u(w1 − x) + βu
(
CE(w̃2 + ˜̀)) ,

in the presence of income risk. Both are maximized over x ∈ [0, w1]. The loss risk has a binary

distribution. A loss of L occurs with probability p(x) whereas no loss occurs with probability

(1−p(x)). Using the same terminology as before, we call a DM prudent (imprudent) if income

risk increases (decreases) self-protection in the strong set order.

For self-insurance, the DM’s objective function is given by

U(y; 0) = u(w1 − y) + βu
(
CE(w2 + ˜̀))

in the absence of income risk and by

U(y; ε̃) = u(w1 − y) + βu
(
CE(w̃2 + ˜̀))

in the presence of income risk with y ∈ [0, w1]. Now a loss of L(y) occurs with probability

p whereas no loss occurs with probability (1 − p). Prudence and imprudence are defined as

previously. For both instruments, we find the following result.

9



Precautionary motives with multiple instruments

Proposition 2. Consider the effect of income risk on optimal self-protection or optimal self-

insurance. The DM is:

(i) prudent if ψ′ is convex and u is more concave than ψ;

(ii) imprudent if ψ′ is concave and u is less concave than ψ.

We provide a proof in Appendix A.3. The intuition is similar to before. Income risk

affects the marginal benefit of either self-protection or self-insurance via two channels under

RU. It lowers CE, and the relative concavity of u and ψ allows us to conclude whether this

decrease in CE affects the marginal benefit positively or negatively. Furthermore, if ψ′ is

convex, an increase in either self-protection or self-insurance raises expected marginal utility

in the presence of income risk by more than in its absence, whereas the reverse is true if ψ′ is

concave. So Table 1 extends to the instruments of self-protection and self-insurance.

Proposition 2 generalizes previous findings on precautionary self-protection to RU (see

Eeckhoudt et al., 2012; Courbage and Rey, 2012; Wang and Li, 2015). Indeed, if u = ψ, we

obtain the additively separable expected utility model as a special case, and condition (i)

simplifies to ψ′ being convex. Precautionary self-insurance has not been considered explicitly

yet in the literature. Eeckhoudt and Kimball (1992) find conditions for an uninsurable back-

ground risk to raise insurance demand against a foreground risk but their analysis is carried

out in a single period. Wang et al. (2015) use additively separable expected utility and their

model contains self-insurance as a special case. In particular, their Proposition 3.2 implies

that the results on precautionary self-protection carry over to precautionary self-insurance.

Our Proposition 2 extends this analysis to RU.

As in the case of saving, we can specify a restriction on ψ alone that guarantees prudent

behavior. Indeed, Remark 2 also holds for self-protection and self-insurance. If ψ exhibits

CARA, an additive income risk ε̃ is multiplicatively separable in terms of expected utility and

expected marginal utility. In this case, income risk raises self-protection or self-insurance to

compensate for the lower CE and smooth consumption.

3.3 Costly risk reduction: A unifying approach

The similarity between saving, self-protection and self-insurance motivates the development

of a unifying approach, that contains the previous results as special cases. As a part of this

generalization, we also consider the practically more relevant changes in income risk from

“risk” to “greater risk,” instead of the restrictive comparison between “no risk” and “risk.”

As another extension, we examine risk averters and risk lovers.

We first provide some background on Nth-degree risk increases and then characterize pre-

cautionary risk reduction behavior. Consider two random variables with support contained

in [z, z] and cumulative distribution functions F and G. We set F (1)(z) ≡ F (z) and define

recursively F (i)(z) =
∫ z
a F

(i−1)(t) dt for integers i ≥ 2 and likewise for G.

10
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Definition 3 (Ekern, 1980). G has more Nth-degree risk than F if

(i) F (N)(z) ≤ G(N)(z) for all z ∈ [z, z],

(ii) F (i)(z) = G(i)(z) for all i ∈ {1, . . . , N}.

Condition (ii) preserves the first (N − 1) moments when increasing Nth-degree risk while

condition (i) implies an increase in the Nth moment, sign adjusted by (−1)N . Well-known

special cases are first-order stochastic dominance for N = 1, an increase in risk for N = 2

(Rothschild and Stiglitz, 1970), an increase in downside risk for N = 3 (Menezes et al., 1980),

and an increase in outer risk for N = 4 (Menezes and Wang, 2005). If G has more Nth-degree

risk than F , we write F �N G. This ordering relation is useful via its link to expected utility.

We use the notation ψ(N)(c) for dNψ(c)/dcN and formulate a familiar result.

Theorem 2 (Ekern, 1980). The following statements are equivalent:

(i) G has more N th-degree risk than F ,

(ii)
∫ z
z ψ(z) dF (z) ≥

∫ z
z ψ(z) dG(z), for all functions ψ with (−1)N+1ψ(N) ≥ 0.

According to Theorem 2, Nth-degree risk increases are precisely the risk changes which are

disliked by all DMs whose utility function satisfies the sign condition in (ii), see also Denuit

et al. (1999) and Jouini et al. (2013). For this reason, Ekern (1980) calls these DMs Nth-

degree risk-averse. Special cases of Nth-degree risk aversion include non-satiation (ψ′ ≥ 0,

N = 1), risk aversion (ψ′′ ≤ 0, N = 2), downside risk aversion (ψ′′′ ≥ 0, N = 3) and

temperance (ψ(4) ≤ 0, N = 4). Similarly, we define DMs to be Nth-degree risk-loving if

their utility function satisfies (−1)N+1ψ(N) ≤ 0. Special cases include risk loving (ψ′′ ≥ 0,

N = 2), downside risk loving (ψ′′′ ≤ 0, N = 3) and intemperance (ψ(4) ≥ 0, N = 4). We

denote by Ψr.a.
N the collection of all utility functions that satisfy (−1)N+1 ψ(N) ≥ 0 and are

thus Nth-degree risk-averse, and by Ψr.l.
N the collection of all utility functions that satisfy

(−1)N+1ψ(N) ≤ 0 and are thus Nth-degree risk-loving.

To connect this to our previous analysis, consider a DM who faces two independent risks in

the second period, an exogenous income risk ε̃ and an endogenous loss risk ˜̀with cumulative

distribution function F (`; a). We parameterize the risk-reducing activity by its upfront cost

a in the first period. This cost reduces the Nth-degree riskiness of ˜̀ in the second period,

F (`; a′′) �N F (`; a′) for a′′ ≥ a′. The activity level a is contained in [a, a] and we focus

on Nth-degree risk averters.9 Saving, self-protection and self-insurance are special cases of

risk-reducing activities for N = 1 because they increase second-period consumption in the

sense of first-order stochastic dominance.

We may now wonder how the riskiness of the exogenous income risk ε̃ affects the DM’s

behavior towards the endogenous risk. Specifically, if ε̃′′ has more Mth-degree risk than ε̃′,

9 Due to the upfront cost, an Nth-degree risk lover would always choose the lowest possible level of the activity
a = a because she does not value Nth-degree risk reduction. Then, all comparative statics are trivial.
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we would like to compare the solution of

max
a∈[a,a]

U(a; ε̃′) = u(w1 − c(a)) + βu
(
CE(w2 + ε̃′ + ˜̀))

to the solution of

max
a∈[a,a]

U(a; ε̃′′) = u(w1 − c(a)) + βu
(
CE(w2 + ε̃′′ + ˜̀)) .

The following proposition summarizes our findings.

Proposition 3. Consider a DM with ψ ∈ Ψr.a.
N who engages in a costly N th-degree risk

reduction activity. For ψ ∈ Ψr.a.
M , an M th-degree risk increase of an independent income risk:

(i) raises optimal risk reduction if ψ ∈ Ψr.a.
M+N and u is more concave than ψ;

(ii) lowers optimal risk reduction if ψ ∈ Ψr.l.
M+N and u is less concave than ψ.

For ψ ∈ Ψr.l.
M , an M th-degree risk increase of an independent income risk:

(iii) lowers optimal risk reduction if ψ ∈ Ψr.l.
M+N and u is more concave than ψ;

(iv) raises optimal risk reduction if ψ ∈ Ψr.a.
M+N and u is less concave than ψ.

We provide a proof in Appendix A.4. We recoup Propositions 1 and 2 as special cases

from Proposition 3(i) and (ii) by setting N = 1 and M = 2. Obviously, results (iii) and

(iv) require M 6= N so that Mth-degree risk loving does not conflict with Nth-degree risk

aversion. The conditions in Proposition 3 allow us to rank U(a; ε̃′) and U(a; ε̃′′) by the interval

dominance order and Theorem 1 then establishes the ranking of the maximizers in the strong

set order. Intuitively, if the DM is risk-averse at orders N , M and M + N , and u is more

concave than ψ, then the Mth-degree increase in income risk raises the marginal value of

reducing the Nth-degree riskiness of the endogenous risk. Mth-degree risk aversion implies

a lower CE in response to the Mth-degree risk increase. This reduction in CE has a positive

effect on the value of Nth-degree risk reduction if u is more concave than ψ, due to the CE

channel. (M + N)th-degree risk aversion ensures that Mth-degree risk increases and Nth-

degree risk increases are mutually aggravating (see Ebert et al., 2018), which is the analog

of the positive MEU channel. Under the stated assumptions, both channels are aligned and

optimal risk reduction increases. Table 2 provides an overview in compact form.

Risk lovers have been receiving increasing attention in recent years (see Crainich et al.,

2013; Jindapon, 2013; Jindapon and Whaley, 2015), which is why we emphasize results (iii)

and (iv). In typical experiments on higher-order risk attitudes, Mth-degree risk loving pref-

erences always play some role and should not be ignored (see Trautmann and van de Kuilen,

2018). Table 2 shows that the condition on the DM’s attitude towards the timing of uncer-

tainty resolution switches when going from the left panel about Mth-degree risk aversion to

12
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ψ ∈ Ψr.a.
M ψ ∈ Ψr.l.

M

ψ ∈ Ψr.a.
M+N ψ ∈ Ψr.l.

M+N ψ ∈ Ψr.a.
M+N ψ ∈ Ψr.l.

M+N

u more concave than ψ increase indet. indet. decrease

u less concave than ψ indet. decrease increase indet.

Table 2: Effect of an Mth-degree increase in income risk on Nth-degree risk reduction for Nth-
degree risk-averse DMs. The notation ψ ∈ Ψr.a.

M is shorthand for Mth-degree risk aversion,
(−1)M+1ψ(M) ≥ 0, and ψ ∈ Ψr.l.

M is shorthand for Mth-degree risk loving, (−1)M+1ψ(M) ≤ 0.

the right panel about Mth-degree risk loving. This is because Mth-degree risk lovers appre-

ciate the Mth-degree risk increase in income risk, which then leads to a higher CE. To align

the CE channel with the MEU channel, we then need to reverse the assumption about the

relative concavity of u and ψ.

Proposition 3 extends Wang and Li’s (2016) result on precautionary saving under RU

to more general forms of risk reduction behavior. They focus exclusively on risk averters

whereas we consider risk lovers as well. Proposition 3 also extends Wang et al.’s (2015)

results on precautionary paying in the additively separable expected utility model. They

consider a possibly non-financial background risk, an extension we could readily provide, and

do not consider risk lovers. Behavior in their model reduces riskiness in the sense of Nth-

order stochastic dominance, which is more general than Ekern (1980) risk effects. Our focus on

Nth-degree risk brings out clearly how the orders associated with endogenous and exogenous

risk changes correspond to the preference conditions. If individuals are mixed risk-averse

(Caballé and Pomansky, 1996), Proposition 3(i) predicts an increase in risk reduction as long

as u is more concave than ψ. Mixed risk aversion is a consistency requirement of “combining

good with bad” and satisfied in many common classes of utility functions (Brockett and

Golden, 1987). While evidence exists in support of it (Deck and Schlesinger, 2014), there are

recent findings to the contrary (Bleichrodt and van Bruggen, 2021). Proposition 3 presents

all combinations of assumptions that admit unambiguous comparative statics.

The consideration of risk averters and risk lovers also highlights the need to distinguish the

DM’s behavioral response to the Mth-degree increase in income risk from its welfare effect.

All DMs in Proposition 3(i) and (ii) are worse off due to the risk change because ψ ∈ Ψr.a.
M

but some of them increase the level of risk reduction while others decrease it. Similarly, all

DMs in Proposition 3(iii) and (iv) are better off due to the risk change because ψ ∈ Ψr.l.
M , but

the optimal level of risk reduction may increase or decrease. So the welfare effect of the risk

change contains no information about the direction of the associated behavioral response. On

the flip-side, among those DMs who react by increasing Nth-degree risk reduction, some are

made worse off by the increase in Mth-degree risk while others are made better off.
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4 Instrument interaction

4.1 Interaction between specific instruments

We now proceed to situations where the DM can use more than one instrument to optimize

intertemporal consumption and react to income risk. We first focus on the specific instruments

outlined in Definition 1. If saving and self-protection are both available to the DM, her

objective function is given by

U(s, x) = u(w1 − s− x) + βu
(
CE(w2 + sR+ ˜̀)) ,

with

ψ
(
CE(w2 + sR+ ˜̀)) = p(x)ψ(w2 + sR− L) + (1− p(x))ψ(w2 + sR).

If she uses saving and self-insurance, her objective function is

U(s, y) = u(w1 − s− y) + βu
(
CE(w2 + sR+ ˜̀)) ,

with

ψ
(
CE(w2 + sR+ ˜̀)) = pψ(w2 + sR− L(y)) + (1− p)ψ(w2 + sR).

If she uses self-protection and self-insurance, her objective function is

U(x, y) = u(w1 − x− y) + βu
(
CE(w2 + ˜̀)) ,

with

ψ
(
CE(w2 + ˜̀)) = p(x)ψ(w2 − L(y)) + (1− p(x))ψ(w2).

In any of these cases, the instruments interact in a nontrivial way, which is the subject of our

next proposition.

Proposition 4. Let u and ψ be strictly increasing and concave. If u is more concave than

ψ, then any pair out of saving, self-protection and self-insurance exhibits Edgeworth-Pareto

substitution in the sense of Samuelson (1974).

A proof is given in Appendix A.5. Intuitively, if u is concave, the marginal cost of an

instrument increases in the use of the other instrument because both instruments compete for

resources in the first period. In the second period, the marginal benefit of an instrument is

decreasing in the use of the other instrument because the marginal value of increasing CE is

higher when CE is low than when it is high. Consequently, a substitution effect arises between

any pair of instruments.

Proposition 4 extends a number of results to RU. Dionne and Eeckhoudt (1984) study the

Hicksian demand for saving and insurance in an expected utility model with non-separable
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utility. Under decreasing temporal risk aversion, saving is then a substitute for insurance.10

Similarly, Menegatti and Rebessi (2011), Hofmann and Peter (2016) and Peter (2017) find a

substitution effect between saving and self-protection or between saving and self-insurance.

If u is more concave than ψ, the DM prefers a late resolution of uncertainty. In this

case, ψ′′′ ≥ 0 ensures prudence in the single-instrument cases, see Propositions 1(i) and 2(i).

Income risk then exerts a positive precautionary effect on each instrument. Edgeworth-Pareto

substitution between the instruments introduces, in addition, conflicting substitution effects.

As a result, in Nocetti’s (2013) words, the instruments are neither income risk complements

nor income risk substitutes because net effects are ambiguous. We conclude that the prevalent

focus on single decision variables in the literature is by no means a simplifying assumption.

4.2 Interaction in costly risk reduction

Proposition 4 applies to any pair of instruments, which points to a more general mechanism.

Let us decompose the loss risk into two independent components, ˜̀= ˜̀1 + ˜̀2, and let ˜̀j be

distributed according to the cumulative distribution function Fj(`; aj) for j = 1, 2. Consider

now two activities, similar to Section 3.3, that reduce the N1th- and the N2th-degree riskiness

of second-period consumption against an upfront cost of a1 and a2 in the first period. Njth-

degree risk reduction implies that Fj(`; a
′′
j ) �Nj F (`; a′j) for a′′j ≥ a′j . The DM’s objective

function is given by

U(a1, a2) = u(w1 − a1 − a2) + βu
(
CE(w2 + ˜̀)) ,

with

ψ
(
CE(w2 + ˜̀)) =

∫ ∫
ψ(w2 + `1 + `2) dF1(`

1; a1) dF2(`
2; a2),

The next proposition examines the relationship between two risk-reducing activities.

Proposition 5. For a concave felicity function u, let ψ ∈ Ψr.a.
i for i = N1, N2, N1 + N2. If

u is more concave than ψ, then N1th-degree risk reduction and N2th-degree risk reduction are

Edgeworth-Pareto substitutes in the sense of Samuelson (1974).

Appendix A.6 provides a proof. Proposition 4 is a special case of Proposition 5 for N1 =

N2 = 1, which then yields the assumptions that ψ be strictly increasing and concave. The

two risk-reduction activities compete for resources in the first period so that an increase

in either activity raises the marginal cost of the other activity. In the second period, an

increase in either activity raises CE, which is more valuable when CE is low rather than high,

that is, when the other activity is at a lower level. This represents a negative CE channel

because u is more concave than ψ. Furthermore, due to (N1 + N2)th-degree risk aversion,

10 Decreasing temporal risk aversion simplifies to decreasing absolute risk aversion with respect to second-period
consumption in the additively separable expected utility model.
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N1th-degree risk increases and N2th-degree risk increases are mutually aggravating (Ebert

et al., 2018). So the marginal value of either activity is lower the higher the level of the other

activity, corresponding to a negative MEU channel. In conjunction, a substitution effect arises

between the two activities.

As a result, the indeterminacy mentioned in relation to Proposition 4 extends to general

risk-reduction activities. If u is more concave than ψ, a mixed risk-averse DM experiences

a positive precautionary effect on each instrument in response to greater income risk, see

Proposition 3(i). However, due to Edgeworth-Pareto substitution between the instruments,

each positive precautionary effect is flanked by a negative substitution effect, and net effects

are thus ambiguous. Using Nocetti’s (2013) terminology, N1th-degree risk reduction and

N2th-degree risk reduction are neither Mth-degree risk complements nor Mth-degree risk

substitutes with respect to income risk.

Instrument interaction persists when considering more than two instruments. Say a DM

uses saving, self-protection and self-insurance all at a time. If u is more concave than ψ and

ψ′′′ ≥ 0, income risk exerts a positive precautionary effect on each instrument, which is now

flanked by two negative substitution effects, one from each of the other instruments. Net

effects are then indeterminate a fortiori.

5 Numerical analysis

5.1 Preliminaries and parameters

Our propositions treat directional changes and do not inform about magnitudes. We calibrate

the model to measure the extent of precautionary reactions to income risk. This sheds further

light on Propositions 1 to 3 by comparing precautionary responses across instruments and

assessing the value of each instrument for the DM. We also quantify interaction effects in

situations with multiple instruments, see Propositions 4 and 5. Finally, we look at scenarios

where, contrary to Propositions 1 to 5, the CE channel and the MEU channel are not aligned.

While it is clear that numerical results depend on functional form assumptions and parameter

values, they help shed light on the potential significance of theoretical trade-offs.

To implement RU preferences as in (1), we use Epstein and Zin’s (1991) specification with

iso-elastic u and ψ functions. We set

u(c) =

{
c1−α/(1− α) if α 6= 1,

ln(c) if α = 1,
and ψ(c) =

{
c1−γ/(1− γ) if γ 6= 1,

ln(c) if γ = 1.

Parameter α is the resistance to intertemporal substitution of consumption, equal to the

inverse of the elasticity of intertemporal substitution (EIS), and parameter γ measures relative

risk aversion. For both parameters we consider a range from 1 to 5 and set α = 3 and γ = 2
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in the base case.11 We are thus in the situation of Propositions 1(i) and 2(i) because ψ′ is

convex and u is more concave than ψ. We set β = 1 for simplicity and briefly discuss its effect

on precautionary behavior at the end of Section 5.2.

Regarding the instruments, we set the gross return on saving to R = 1 and specify self-

protection and self-insurance as

p (x) = p0 e
−µx and L (y) = L0 e

−νy,

where p0 ∈ (0, 1) is the baseline probability of loss, L0 the baseline severity of loss, and µ and ν

are positive efficiency parameters. Briys et al. (1991) use a negative exponential specification

for risky self-insurance with uncertain effectiveness (see also Li and Peter, 2021), and Barro

(2015) uses this functional form for self-protection in the context of optimal environmental

investment. We set µ = 0.0015355 and ν = 0.0012866 in the base case. As stated in Courbage

et al.’s (2013) survey article, the empirical literature on prevention is thin so there is no

descriptive guidance on the size of these parameters.12

For the remaining economic parameters, we set w1 = w2 = $50, 000, which corresponds

roughly to the annual median income for individuals 25 years and older with a bachelor’s

degree in the US.13 We set p0 = 10% and L0 = $10, 000, resulting in an expected unmitigated

loss of $1,000 or 2% of annual income. While we have no particular risk exposure in mind,

examples include physical damage and liability risks arising from home and vehicle ownership,

uncovered healthcare costs, unanticipated maintenance or repair costs, etc.

The background risk ε̃ on future income is the root cause of precautionary behavior. We

focus on increases in riskiness and downside riskiness by setting Eε̃ = 0, like in our theoretical

analysis. We use binary lotteries, which are fully characterized by their first three moments

(see Ebert, 2015). Empirically, economists have analyzed annual log earnings growth to study

the cross-sectional and dynamic properties of income risk. Based on a large panel data set

of W2 filings in the US, Guvenen et al. (2015) find substantial deviations from lognormality

with strong negative skewness and high kurtosis. Recently, De Nardi et al. (2020) analyze

annual household level after-tax earnings growth for the PSID data. Their focus on household

disposable income attenuates the magnitudes of the higher-order moments in Guvenen et al.

11 Gollier (2001) suggests that relative risk aversion ranges from 1 to 4. Meyer and Meyer (2005) adjust reported
values of relative risk aversion to account for different ways its argument is measured (i.e., consumption,
wealth, income). Most adjusted values are between 1 and 5. For EIS, Havránek (2015) finds strong selective
reporting in the literature. He states a corrected mean of micro estimates for asset holders around 0.3-0.4,
corresponding to α values between 2.5 and 3.33. Thimme (2017) concludes that, for representative agents
who consume a single nondurable consumption good, EIS should clearly be below unity.

12 Our parameter choice reflects a compromise and ensures that all technologies are in use in the base case. If
µ or ν is high, a small investment suffices to reduce the probability or severity of loss considerably, which
leaves little room for precautionary behavior. If µ or ν is low, the technologies are ineffective and will not
be used or be dominated by other technologies. Appendix B discusses how precautionary instrument use
depends on the respective technology parameters.

13 See the Bureau of Labor Statistics, www.bls.gov/emp/chart-unemployment-earnings-education.htm.
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(2015) due to intra-family risk sharing (Blundell et al., 2016), but lognormality is still strongly

rejected. In De Nardi et al. (2020), the standard deviation of annual log earnings growth ranges

from 0.25 to 0.6 with most values below 0.4 and the skewness is between -2 and 0, see the

bottom panel of their Figure 1.

For riskiness, we specify ε̃ as a 50-50 chance of realizing a gain or loss of ε in annual income,

that is, ε̃ = [0.5,−ε; 0.5, ε]. We vary ε in increments of $5,000 between $0 for riskless income

and $20,000 for an income risk of 40% of annual income. This yields a standard deviation of

annual log earnings growth between 0 and 0.42 while skewness is uniformly zero. For downside

risk, we use the construction in Ebert’s (2015) Proposition 1 to obtain skewed risks with a

mean of zero, a standard deviation of 25% of annual income, and skewness ranging from 0 to -2

in decrements of 0.5 . We set ε̃ = [q, ε−; (1−q), ε+] and solve for the unique q ∈ (0, 1), ε− < 0

and ε+ > 0 to generate the first three moments accordingly. Table 9 in Online Appendix C.2

provides the corresponding parameter values. The log earnings growth of these income risks

has a standard deviation ranging from 0.26 to 0.36 and a skewness between 0 and -2. Table 3

summarizes all parameter choices for the base case.14

In our numerical set-up, each objective function has a unique interior maximizer in the

single-instrument cases and when multiple instruments are available. To conduct welfare

comparisons, we also report smooth certainty-equivalent consumption csce. We define it as

the riskless time-invariant consumption stream (csce, csce) that yields a given level of RU. For

instance, when the income risk is ε̃ and the optimal level of saving is s∗, smooth certainty-

equivalent consumption is implicitly given by

u (csce) + βu (csce) = U (s∗; ε̃) .

It is measured in dollars and can thus be compared across risk levels and instruments. Our

measure of welfare is comparable to Wang et al.’s (2016) certainty-equivalent wealth.

5.2 Precaution with a single instrument

As a benchmark, we first consider the single-instrument cases from Section 3. We denote

the optimal level of saving in the absence of income risk by s0 = arg maxs U(s; 0) and the

optimal level of saving in the presence of income risk by s∗ = arg maxs U(s; ε̃). The amount

of precautionary saving is then given by sπ = s∗ − s0 and the fraction of savings that are

precautionary is sπ/s∗. These notations apply analogously to the other instruments.

Table 4 reports the results for symmetric income risks. As Propositions 1 and 2 predict,

income risk induces precautionary saving, self-protection and self-insurance: their levels are

higher in the presence of income than when it is absent. For each instrument, the precau-

14 The binary risk assumptions understates the kurtosis of the log earnings growth. It ranges from 1 to 5 in
our examples whereas De Nardi et al. (2020) find kurtosis up to 20 with many values around 10. We leave
it for future research how kurtosis affects our results.
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Parameter Description Value

Preference parameters

α Inverse of EIS 3

γ Relative risk aversion 2

β Utility discount factor 1

Instruments

R Gross return on saving 1

µ Efficiency of self-protection 0.0015355

p0 Baseline probability of loss 10%

ν Efficiency of self-insurance 0.0012866

L0 Baseline severity of loss $10,000

Economic parameters

w1 Income in first period $50,000

w2 Income in second period $50,000

ε̃ Income risk (symmetric) [0.5,−ε; 0.5,+ε],

σ(ε̃)/w2 ∈ [0, 0.4]

Income risk (skewed) [q, ε−; (1− q), ε+],

sk(ε̃) ∈ [−2, 0]

Table 3: Parameter values for the base case.

tionary component increases in income risk at an increasing rate. At high levels of income

risk, precautionary saving accounts for more than 80% of total saving, and precautionary self-

protection and self-insurance account for 40-55% of total instrument use. Saving shows by far

the strongest precautionary response, exceeding those of self-protection and self-insurance by

a factor of roughly 9 to 12.15 Saving does not affect the loss risk directly so the expected loss

is $1,000 regardless of the size of the income risk. Self-protection and self-insurance mitigate

the loss risk by reducing either its probability or its severity. Without income risk the DM

faces an expected loss of $527 in case of self-protection and of $606 for self-insurance. Income

risk induces precautionary behavior, which then lowers the expected loss.

The instruments affect the distribution of second-period consumption in different ways

as summarized in Remark 1. Saving increases expected consumption but has no effect on

the standard deviation and the skewness of second-period consumption; self-protection and

self-insurance have the added benefit of reducing the standard deviation and increasing the

15 Precautionary self-protection and precautionary self-insurance are inverse U-shaped in the efficiency param-
eters µ and ν, see Appendix B. Even at their respective peak, the precautionary response of saving is still
higher by a factor of 6.
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Saving Loss risk Moments of c̃2
σ(ε̃)
w2

s∗ sπ sπ/s∗ p0 L0 Ec̃2 σ(c̃2) sk(c̃2) csce

0% 651 0 0% 10% 10,000 49,651 3,000 -2.67 49,392

10% 991 340 34% 10% 10,000 49,991 5,831 -0.36 49,137

20% 1,970 1,320 67% 10% 10,000 50,970 10,440 -0.06 48,390

30% 3,485 2,834 81% 10% 10,000 52,485 15,297 -0.02 47,195

40% 5,413 4,763 88% 10% 10,000 54,413 20,224 -0.01 45,614

Self-protection
σ(ε̃)
w2

x∗ xπ xπ/x∗ p(x∗) L0 Ec̃2 σ(c̃2) sk(c̃2) csce

0% 417 0 0% 5.27% 10,000 49,473 2,235 -4.00 49,466

10% 447 30 7% 5.03% 10,000 49,497 5,457 -0.26 49,207

20% 538 122 23% 4.38% 10,000 49,562 10,207 -0.04 48,408

30% 695 279 40% 3.44% 10,000 49,656 15,110 -0.01 47,005

40% 927 511 55% 2.41% 10,000 49,759 20,059 -0.00 44,876

Self-insurance
σ(ε̃)
w2

y∗ yπ yπ/y∗ p0 L(y∗) Ec̃2 σ(c̃2) sk(c̃2) csce

0% 389 0 0% 10% 6,061 49,394 1,218 -2.67 49,465

10% 418 29 7% 10% 5,843 49,416 5,298 -0.10 49,206

20% 503 114 23% 10% 5,234 49,477 10,123 -0.01 48,409

30% 647 258 40% 10% 4,351 49,565 15,057 -0.00 47,010

40% 853 464 54% 10% 3,337 49,666 20,025 -0.00 44,888

Table 4: Precautionary saving, self-protection and self-insurance in the base case with sym-
metric income risks ε̃ = [0.5,−ε; 0.5, ε]. The ε values of $0, $5,000, $10,000, $15,000 and
$20,000 yield a 0%, 10%, 20%, 30% and 40% standard deviation of second-period income.

skewness of second-period consumption.16 This explains why the DM uses saving more than

self-protection or self-insurance, namely to compensate for the fact that saving does not

mitigate the riskiness or downside riskiness of second-period consumption.

In terms of welfare, income risk reduces smooth certainty-equivalent consumption at an

increasing rate for all three instruments. At low income risk levels (≤ 10%), self-protection

and self-insurance are more valuable for the DM than saving, but as income risk increases,

this pattern reverses. Where this reversal occurs depends on the efficiency parameters µ and

16 The only exception is self-protection in the absence of income risk. Starting from dsk(c̃2)/dx and dsk(c̃2)/dy
in Online Appendix C.1, self-protection lowers sk(c̃2) in the absence of income risk and self-insurance has
no effect on sk(c̃2) in the absence of income risk.
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Saving Loss risk Moments of c̃2

sk(ε̃) s∗ sπ sπ/s∗ p0 L0 Ec̃2 σ(c̃2) sk(c̃2) csce

0 2,669 2,018 76% 10% 10,000 51,668 12,855 -0.03 47,845

-0.5 4,420 3,769 85% 10% 10,000 53,420 12,855 -0.49 46,133

-1.0 6,427 5,776 90% 10% 10,000 55,427 12,855 -0.95 44,217

-1.5 8,692 8,042 93% 10% 10,000 57,692 12,855 -1.41 42,085

-2.0 11,211 10,560 94% 10% 10,000 60,211 12,855 -1.87 39,731

Self-protection

sk(ε̃) x∗ xπ xπ/x∗ p(x∗) L0 Ec̃2 σ(c̃2) sk(c̃2) csce

0 608 191 31% 3.93% 10,000 49,607 12,650 -0.02 47,788

-0.5 784 367 47% 3.00% 10,000 49,700 12,616 -0.50 45,733

-1.0 1,018 601 59% 2.09% 10,000 49,791 12,582 -0.99 43,118

-1.5 1,342 925 69% 1.27% 10,000 49,873 12,550 -1.49 39,712

-2.0 1,821 1,404 77% 0.61% 10,000 49,939 12,524 -1.99 35,159

Self-insurance

sk(ε̃) y∗ yπ yπ/y∗ p0 L(y∗) Ec̃2 σ(c̃2) sk(c̃2) csce

0 568 178 31% 10% 4,818 49,518 12,593 -0.00 47,791

-0.5 730 341 47% 10% 3,908 49,609 12,555 -0.50 45,737

-1.0 943 554 59% 10% 2,971 49,703 12,532 -0.99 43,125

-1.5 1,230 840 68% 10% 2,056 49,794 12,515 -1.49 39,725

-2.0 1,628 1,239 76% 10% 1,231 49,877 12,505 -2.00 35,182

Table 5: Precautionary saving, self-protection and self-insurance in the base case with skewed
income risks ε̃ = [q, ε−; (1 − q), ε+] with Eε̃ = 0 and σ(ε̃)/w2 = 25%. Parameters q ∈ (0, 1),
ε− and ε+ are uniquely determined by Ebert’s (2015) Proposition 1 to obtain skewness values
ranging from 0 to -2, see Table 9 in Online Appendix C.2.

ν. On average, increasing the standard deviation of the income risk by a dollar reduces csce by

19 cents for saving and by 22 cents for self-protection and self-insurance for our parameters.

Table 5 shows the impact of downside risk on precautionary behavior. As Proposition 3

predicts, saving, self-protection and self-insurance increase in the downside riskiness of the

income risk. The precautionary components increase with downside risk at an increasing rate.

For a skewness of -1, precautionary responses are stronger than in Table 4, and substantially

so for high negative skewness. The precautionary response of saving exceeds that of self-

protection and self-insurance by a factor of 8 to 11.
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Figure 1: Precautionary choices in the single-instrument cases for various values of α and γ.
The underlying income risk is skewed with Eε̃ = 0, σ(ε̃) = $12, 500, and sk(ε̃) = −1. The
square represents the values of sπ, xπ and yπ from the base case (α = 3, γ = 2), see the third
row in Table 5. The dots represent additively separable expected utility with α = γ.

Self-protection and self-insurance now reduce the skewness of second-period consumption

slightly, contrary to the case with symmetric income risks where they tend to increase it.

According to Remark 1, the effect of self-protection on the skewness of second-period con-

sumption depends on a probability threshold that becomes smaller as the skewness of the

income risk decreases. In our example, this threshold is less than 1% for sk(ε̃) ≤ −0.29 and

negative as soon as sk(ε̃) ≤ −0.54. The probability threshold for self-insurance is also de-

creasing in the downside riskiness of income risk. It is less than 1% for sk(ε̃) ≤ −0.28 and

negative as soon as sk(ε̃) ≤ −0.34. Self-protection and self-insurance still have the added

benefit of reducing the standard deviation of second-period consumption.

In terms of welfare, downside risk reduces smooth certainty-equivalent consumption at an

increasing rate. Self-protection and self-insurance are almost equally effective at addressing

the negative skewness of the income risk, yet saving is more effective. For high negative

skewness, say sk(ε̃) = −2, smooth certainty-equivalent consumption is 13% higher when the

DM uses saving instead of self-protection or self-insurance. For saving, a one percentage point

decrease in the skewness of the income risk has, on average, the same effect on the DM as a

certain loss of $40.57 in each period. This loss is $63.15 for self-protection and $63.05 for self-

insurance, and so about one-and-a-half times as high as for saving. The advantage of saving

over self-protection and self-insurance increases in the downside riskiness of the income risk.

In our setting, welfare losses due to negatively skewed income risks can be substantially larger

than welfare losses due to symmetric income risks.

In Figure 1, we show how precautionary saving, self-protection and self-insurance depend

on the preference parameters α and γ in the single-instrument cases. The underlying income

risk is skewed with sk(ε̃) = −1, corresponding to the third rows in Table 5. We choose

this risk for illustration because the standard deviation and skewness of the associated log

earnings growth fit particularly well within the ranges reported by De Nardi et al. (2020).

Precautionary saving ranges from $4,402 to $9,589, precautionary self-protection from $190
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to $1,498, and precautionary self-insurance from $197 to $1,156. Saving is more sensitive to

changes in the preference parameters, followed by self-protection and then self-insurance. All

precautionary responses in Figure 1 are positive even when the CE channel is negative, that

is, when α < γ. The positive MEU channel always dominates in our setting. Furthermore,

the amount of precaution is increasing in the relative risk aversion parameter γ for all three

instruments. For iso-elastic utility, γ + 1 measures the degree of convexity of the marginal

utility function, so the positive effect comes from the MEU channel.

The effect of EIS, namely 1/α, differs across instruments. Higher EIS increases precau-

tionary saving, but decreases precautionary self-protection and precautionary self-insurance.

The reason is related to the CE channel. If the CE of second-period consumption exceeds

first-period consumption, utility in the second period is higher than in the first period. An

increase in EIS reduces the curvature of the felicity function so that the marginal value of

additional consumption is higher in the second than in the first period. We know from Table 5

that DMs use saving more than self-protection and self-insurance. But higher instrument use

implies lower first-period consumption and a higher CE in the second period, which explains

why the effect of EIS differs across instruments (see also Huber, 2021, on this point).

The utility discount factor has no major impact on precautionary behavior. We varied β

from 0.95 to 1 for the skewed income risk with sk(ε̃) = −1. Instrument use is increasing in β for

all instruments both in the absence and in the presence of income risk. More patient DMs are

willing to spend more money upfront to increase expected consumption in the second period.

For saving, the effect is slightly stronger in the absence of income risk so that precautionary

saving is decreasing in β. However, the size of the effect is small and less than $70 as β

increases from 0.95 to 1. Precautionary self-protection and precautionary self-insurance are

increasing in β but the effect is so small that it is hardly perceptible. Appendix B discusses

the effect of the return parameters R, µ and ν on precautionary behavior.

5.3 Precaution with two instruments

We now let two instruments be available to the DM. Consider saving and self-protection first.

Let (s0, x0) = arg max(s,x) U(s, x; 0) be the optimal levels of saving and self-protection in the

absence of income risk and (s∗, x∗) = arg max(s,x) U(s, x; ε̃) be the optimal levels of saving and

self-protection in the presence of income risk. Precautionary saving and precautionary self-

protection are then given by sπ = s∗−s0 and xπ = x∗−x0. We also report the total amount of

precaution, πs,x = sπ+xπ. To quantify interaction effects, we consider the restricted response

of each instrument by keeping the other instrument fixed. This yields sr = arg maxs U(s, x0; ε̃)

for saving and xr = arg maxx U(s0, x; ε̃) for self-protection, where superscript r is short for

restricted. Restricted precautionary saving is sπr = sr − s0, and restricted precautionary self-

protection is xπr = xr − x0. The comparison of sπr and sπ informs about the interaction effect

of self-protection on saving, and the comparison of xπr and xπ about the interaction effect of

saving on self-protection. These notations apply analogously to the other instrument pairs.
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Saving Self-protection
σ(ε̃)
w2

s∗ sπ sπr x∗ xπ xπr πs,x csce

0% 154 0 0 405 0 0 0 49,467

10% 488 334 337 408 4 30 338 49,213

20% 1,448 1,294 1,308 418 13 121 1,307 48,471

30% 2,934 2,780 2,810 433 28 276 2,809 47,285

40% 4,827 4,673 4,724 452 47 507 4,720 45,713

Saving Self-insurance
σ(ε̃)
w2

s∗ sπ sπr y∗ yπ yπr πs,y csce

0% 172 0 0 377 0 0 0 49,465

10% 504 332 335 380 4 28 336 49,213

20% 1,458 1,286 1,301 391 14 113 1,300 48,473

30% 2,935 2,763 2,794 406 29 255 2,792 47,291

40% 4,818 4,646 4,697 423 47 460 4,693 45,726

Self-protection Self-insurance
σ(ε̃)
w2

x∗ xπ xπr y∗ yπ yπr πx,y csce

0% 250 0 0 163 0 0 0 49,468

10% 253 3 29 189 26 29 29 49,209

20% 268 18 117 261 98 113 115 48,413

30% 306 56 267 368 205 254 261 47,014

40% 382 132 488 502 338 455 470 44,893

Table 6: Precautionary behavior in the base case with two instruments out of saving, self-
protection and self-insurance for symmetric income risks ε̃ = [0.5,−ε; 0.5, ε]. The ε values $0,
$5,000, $10,000 $15,000 and $20,000 yield a 0%, 10% , 20%, 30% and 40% standard deviation
of second-period income.

Table 6 reports the results in the base case for symmetric income risks and Table 7 for

downside risk. As in the single-instrument cases, precautionary saving, self-protection and

self-insurance occur and increase in the riskiness and downside riskiness of the income risk. So

the positive precautionary effect of income risk always dominates negative substitution effects

from one instrument on the other. Saving exerts strong substitution effects on self-protection

and self-insurance and can reduce their precautionary response by more than 90%, especially

for skewed income risks. Self-protection and self-insurance, in contrast, exert only moderate

substitution effects on saving, reducing the amount of precautionary saving by roughly 1% or

less. For symmetric income risks, the substitution effect of self-insurance on self-protection

is stronger than that of self-protection on self-insurance. As the negative skewness of the
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Saving Self-protection

sk(ε̃) s∗ sπ sπr x∗ xπ xπr πs,x csce

0 2,133 1,979 2,000 425 20 190 1,999 47,930

-0.5 3,870 3,717 3,747 433 28 365 3,745 46,222

-1.0 5,856 5,702 5,745 445 40 597 5,742 44,311

-1.5 8,092 7,938 7,999 461 56 919 7,994 42,187

-2.0 10,570 10,416 10,502 482 77 1,392 10,493 39,844

Saving Self-insurance

sk(ε̃) s∗ sπ sπr y∗ yπ yπr πs,y csce

0 2,139 1,966 1,988 398 21 177 1,987 47,934

-0.5 3,872 3,700 3,731 406 29 339 3,729 46,228

-1.0 5,852 5,680 5,723 417 40 550 5,720 44,321

-1.5 8,079 7,907 7,968 432 55 834 7,962 42,202

-2.0 10,546 10,374 10,457 451 74 1,228 10,448 39,867

Self-protection Self-insurance

sk(ε̃) x∗ xπ xπr y∗ yπ yπr πx,y csce

0 283 33 183 311 147 176 180 47,795

-0.5 372 122 354 388 225 333 347 45,743

-1.0 479 229 579 496 332 538 664 43,133

-1.5 619 369 886 641 478 817 847 39,735

-2.0 815 565 1,329 836 672 1,205 1,237 35,193

Table 7: Precautionary behavior in the base case with two instruments out of saving, self-
protection and self-insurance for skewed income risks ε̃ = [q, ε−; (1− q), ε+] with Eε̃ = 0 and
σ(ε̃)/w2 = 25%. Parameters q ∈ (0, 1), ε− and ε+ are uniquely determined to obtain skewness
values ranging from 0 to -2, see Table 9 in Online Appendix C.2.

income risk increases, the two substitution effects become more equal in size. For example,

for sk(ε̃) = −1 (third rows in Table 7), self-insurance reduces precautionary self-protection

by 60% from $579 to $229 and self-protection reduces precautionary self-insurance by 38%

from $538 to $332. In our setting, self-protection is most susceptible to substitution effects,

followed by self-insurance and then saving, which is quite robust to substitution effects.

The total precautionary response is increasing in the riskiness and downside riskiness of

the income risk. For each instrument pair, its level is higher than the precautionary response

of the less sensitive instrument but lower than that of the more sensitive instrument in the

single-instrument cases. For example, for saving and self-protection with sk(ε̃) = −1, we have

sπ = $5, 776 and xπ = $601 from Table 5 in the single-instrument cases, and πs,x = $5, 742
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from Table 7 when both instruments are used simultaneously. We then observe that πs,x

exceeds xπ but is less than sπ.

Smooth certainty-equivalent consumption is higher than in any of the corresponding single-

instrument cases because being able to use an additional instrument can never make the DM

worse off. The DM gains most from getting access to saving, and the additional value increases

at an increasing rate in the riskiness and downside riskiness of the income risk. For symmetric

income risks, saving increases csce up to $838 and for skewed income risks the gain can be as

high as $4,685.17 By contrast, the gains from using self-protection or self-insurance on top of

saving are more moderate, in the ranges of $73-$112 for symmetric income risks and $85-$136

for skewed income risks. When using self-insurance on top of self-protection or self-protection

on top of self-insurance, the gains are even smaller and do not exceed $15 in most cases.

5.4 Precaution with three instruments

Now assume that all three instruments are available to the DM. In the absence of income

risk, the optimal choice is (s0, x0, y0) = arg max(s,x,y) U(s, x, y; 0), in the presence of income

risk, it is (s∗, x∗, y∗) = arg max(s,x,y) U(s, x, y; ε̃). Precautionary saving, self-protection and

self-insurance are given by sπ = s∗ − s0, xπ = x∗ − x0 and yπ = y∗ − y0, respectively, and

the total amount of precaution is πs,x,y = sπ + xπ + yπ. The restricted responses are now

sr = arg maxs U
(
s, x0, y0; ε̃

)
for saving, xr = arg maxx U

(
s0, x, y0; ε̃

)
for self-protection, and

yr = arg maxy U
(
s0, x0, y; ε̃

)
for self-insurance. For the restricted responses, we keep both of

the other instruments at their level without income risk to isolate the direct effect of income

risk on the instrument of interest. The restricted precautionary choices are thus sπr = sr− s0,
xπr = xr − x0 and yπr = yr − y0. Comparing sπr and sπ informs us about the joint substitution

effect of self-protection and self-insurance on saving, and likewise for the other instruments.

Table 8 presents the results in the base case for symmetric and skewed income risks

when all three instruments are available to the DM. Positive precautionary reactions now

only arise in saving and self-insurance, and both are increasing in the riskiness and downside

riskiness of the income risk. As in the two-instrument cases, the substitution effects of self-

protection and self-insurance on saving are hardly perceptible and reduce precautionary saving

by less than 1%. The substitution effect of saving and self-protection on self-insurance lowers

precautionary self-insurance by 29-52% for symmetric income risks and by 39-76% for skewed

income risks. It is sizeable but smaller than the substitution effect of saving on self-insurance

in the corresponding two-instrument case. The substitution effect of saving and self-insurance

on self-protection is so strong that it outweighs the positive precautionary effect of income

17 When σ(ε̃)/w2 = 40%, we obtain $837 by subtracting $44,876 in Table 4 for self-protection from $45,713 in
Table 6 for saving and self-protection, and $838 by subtracting $44,888 in Table 4 for self-insurance from
$45,726 in Table 6 for saving and self-insurance. For skewness with sk(ε̃) = −2, we find $4,685 = $39,844-
$35,159 for being able to use saving in addition to self-protection, and the same $4,685 = $39,867-$35,182
for being able to use saving in addition to self-insurance, see Tables 5 and 7.
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Saving Self-protection Self-insurance
σ(ε̃)
w2

s∗ sπ sπr x∗ xπ xπr y∗ yπ yπr πs,x,y csce

0% 149 0 0 241 0 0 161 0 0 0 49,468

10% 482 333 336 223 -18 28 181 20 28 335 49,216

20% 1,440 1,291 1,304 177 -64 116 234 53 112 1,280 48,475

30% 2,923 2,774 2,801 116 -125 265 304 143 252 2,792 47,292

40% 4,813 4,664 4,709 50 -191 484 380 219 452 4,692 45,726

Saving Self-protection Self-insurance

sk(ε̃) s∗ sπ sπr x∗ xπ xπr y∗ yπ yπr πs,x,y csce

0 2,124 1,975 1,994 147 -94 182 268 107 175 1,988 47,935

-0.5 3,860 3,711 3,738 116 -125 352 304 143 331 3,729 46,229

-1.0 5,843 5,694 5,733 74 -167 575 353 192 536 5,719 44,321

-1.5 8,077 7,928 7,981 20 -221 880 414 253 812 7,960 42,202

-2.0 10,547 10,398 10,476 0 -241 1,320 450 289 1,197 10,446 39,867

Table 8: Precautionary behavior in the base case with all three instruments. The first panel is for
symmetric income risks ε̃ = [0.5,−ε; 0.5, ε]. The ε values $0, $5,000, $10,000 $15,000 and $20,000 yield
a 0%, 10% , 20%, 30% and 40% standard deviation of second-period income. The second panel is for
skewed income risks ε̃ = [q, ε−; (1− q), ε+] with Eε̃ = 0 and σ(ε̃)/w2 = 25%. Parameters q ∈ (0, 1), ε−
and ε+ generate skewness values ranging from 0 to -2, see Table 9 in Online Appendix C.2.

risk. Optimal self-protection is now decreasing in the riskiness and downside riskiness of

the income risk. This results in negative values for xπ, despite the fact that the conditions

of Proposition 3(i) are satisfied. For income risks with high negative skewness, saving and

self-insurance crowd out self-protection entirely. This example shows that the composition of

the DM’s portfolio of instruments has a major impact on the link between preferences and

precautionary behavior. The role of substitution effects ranges from hardly perceptible to

being of first-order importance. The case of self-protection illustrates that substitution effects

can turn existing predictions upside down.

The total precautionary response is increasing in the riskiness and downside riskiness of the

income risk. Its level is higher than the least sensitive pairing of instruments, but lower than

the two more sensitive pairings of instruments from the two-instrument cases. Specifically,

in our set-up, πs,x,y in Table 8 exceeds the corresponding πx,y value but is less than the

corresponding πs,x and πs,y values in Tables 6 and 7 for the risks under consideration.

In terms of welfare, the DM benefits from being able to use all three instruments instead

of only two, yet the gains differ across instruments. Gaining access to saving is most valuable

but the gains are slightly smaller than in the two-instrument case. For symmetric income

risks, saving increases csce up to $833 and for skewed income risks the gain is up to $4,674.
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The gain from being able to use self-insurance does not exceed $15 in all but one case, and

the availability of self-protection raises csce even less due to the strong substitution effects.

When saving and self-insurance crowd out self-protection to a large extent anyway, being able

to use self-protection is only of little value.

6 Inference

We will now provide further insight into the link between preferences and precautionary be-

havior and the role of instrument interaction in this relationship. Section 5 focused on the

effects of riskiness and downside riskiness on instrument use for a given set of RU prefer-

ences. In this section, we wonder about different RU preferences that can rationalize a given

precautionary motive for a fixed level of income risk when either one or two instruments are

available to the DM.

We focus on the zero-mean income risk with σ(ε̃)/w2 = 25% and sk(ε̃) = −1 because

the standard deviation and skewness of the associated log earnings growth fit nicely in the

empirical ranges given by De Nardi et al. (2020). This income risk was used in the third rows

of Tables 5 and 7, and in the third row of the bottom panel of Table 8. We can then fix the

precautionary use of an instrument and wonder about the (α, γ)-combinations that lead to the

same amount of precaution in that instrument. Hence, we determine iso-precaution curves in

the (α, γ)-plane. If an additional instrument is available to the DM, these iso-curves can be

determined in at least two different ways. We can let the other instrument adjust endogenously

as we vary the preference parameters. Alternatively, we can keep the other instrument fixed

at its baseline level so that the first instrument absorbs the entire precautionary response. We

use Kimball and Weil’s (KW, 2009) relative prudence measure for RU to assess the discrepancy

between the two curves. This measure is given by γ (1 + α) /α, see their Section 2.

Figure 2 focuses on precautionary saving and considers the presence of either self-protection

in panel (a) or self-insurance in panel (b). For saving and self-protection, we have s∗ = $5, 856,

x∗ = $445 and precautionary savings of sπ = $5, 702 from the top panel of Table 7 for RU

preferences with α = 3 and γ = 2. The solid curve collects the (α, γ)-combinations that lead

to the same amount of precautionary saving while letting the level of self-protection vary as we

adjust preferences. The dashed curve collects the (α, γ)-combinations that lead to the same

amount of precautionary saving but keeping self-protection fixed at its level in the base case,

x∗ = $445. The dashed curve lies slightly below the solid curve resulting in smaller values

of relative KW-prudence. If saving absorbs the entire precautionary response, less prudence

suffices to generate the given amount of precautionary saving. If the other instrument is en-

dogenous, a substitution effect is at work, which diminishes precautionary saving. Therefore,

more prudence is necessary to obtain the same precautionary saving amount. The difference

is small in magnitude though. Along the solid line, relative KW-prudence varies from 2.62 to

2.68, and along the dashed line, it varies from 2.59 to 2.62.
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(a) Iso-precautionary saving curves with endogenous
self-protection (solid line) or a fixed level of self-
protection x = $445 (dashed line)
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(b) Iso-precautionary saving curves with endogenous
self-insurance (solid line) or a fixed level of self-
insurance y = $417 (dashed line)

Figure 2: Iso-precautionary saving curves in the (α, γ)-plane. The solid curve allows for
adjustments to the other instrument, the dashed curve keeps the other instrument fixed.

Matters are similar in panel (b) for precautionary saving and self-insurance. We have

s∗ = $5, 852, y∗ = $417 and precautionary savings of sπ = $5, 680 from the middle panel of

Table 7. The two curves in panel (b) collect the (α, γ)-combinations that lead to the same

precautionary saving amount. The solid curve allows self-insurance to adjust as preference

parameters vary; the dashed curve keeps self-insurance fixed at its level in the base case. The

solid curve lies above the dashed curve due to the substitution effect when self-insurance is

endogenous. Relative KW-prudence ranges from 2.59 to 2.62 along the solid curve and from

2.62 to 2.68 along the dashed curve. The γ-values in panel (b) are higher than those in panel

(a) but the difference is hardly perceptible and so small that relative KW-prudence is identical

up to the first two decimal places. Even though we see a difference between the two curves

in panels (a) and (b), saving is fairly robust to substitution effects from self-protection and

self-insurance, and instrument interaction only has subtle effects on preference identification.

Figure 3 considers the reverse scenarios of precautionary self-protection and precautionary

self-insurance in the presence of saving. For self-protection and saving, we have x∗ = $445,

s∗ = $5, 856 and precautionary self-protection of xπ = $40 from the top panel of Table 7.

The two curves in panel (a) collect the (α, γ)-combinations where xπ remains unchanged, the

solid curve allows saving to vary, the dashed curve keeps saving fixed at its level in the base

case. Now we see a pronounced gap between the two curves. Relative KW-prudence ranges

from 4.6 to 2.17 along the solid curve and from -1.19 to 0.92 along the dashed curve. The

substitution effect of saving on self-protection is so strong that the precautionary response of

self-protection looks small. Trying to explain such a modest precautionary response without

integrating other instruments requires much lower levels of prudence. In panel (a), the dashed

curve even requires negative γ-values for α ≤ 3.5 because positive values of γ cannot generate

amounts of precautionary self-protection that low.
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(a) Iso-precautionary self-protection curves with en-
dogenous saving (solid line) or a fixed level of saving
s = $5, 856 (dashed line)
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(b) Iso-precautionary self-insurance curves with en-
dogenous saving (solid line) or a fixed level of saving
s = $5, 852 (dashed line)

Figure 3: Iso-precautionary self-protection and self-insurance curves in the (α, γ)-plane. The
solid curve allows for adjustments to saving, the dashed curve keeps saving fixed.

For self-insurance and saving, we have y∗ = $417, s∗ = $5, 852 and precautionary self-

insurance of yπ = $40 from the middle panel of Table 7. The two curves in Panel (b) collect

the (α, γ)-combinations where yπ remains unchanged, the solid curve allows saving to vary,

the dashed curve keeps saving fixed at its level in the base case. Relative KW-prudence ranges

from 5 to 2.12 along the solid curve and from -0.70 to 1.03 along the dashed curve. Saving

exerts a strong substitution effect on self-insurance, which reduces its precautionary response

significantly and lowers the implied levels of prudence substantially. For α ≤ 2.5, the dashed

curve even requires negative γ-values because positive values for γ would generate higher

amounts of precautionary self-insurance.

7 Conclusion

We analyze precautionary behavior in a model that disentangles risk and time. DMs can

use various instruments to deal with income risk: saving, self-protection and self-insurance.

We derive a unifying result and show that, when used in isolation, all three instruments are

subject to the same trade-offs as the level of income risk changes. Our result encompasses

higher-order risk effects and considers risk averters and risk lovers alike. When instruments

are used in combination, substitutive interaction effects arise that impede general conclusions.

We thus provide a detailed numerical analysis to explore and compare precautionary behavior

across instruments and evaluate how instruments interact.

In our setting, saving shows the largest precautionary response and is quite robust to

substitution effects. Hence, it is well-suited to infer preferences from precautionary motives

even when we are unsure whether and how DMs incorporate self-protection and self-insurance

into their overall life-cycle optimization. Matters are different for precautionary self-protection
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and precautionary self-insurance. Both instruments show a more moderate precautionary

response in isolation and experience strong substitution effects from saving. The substitution

effect can be strong enough to outweigh precautionary effects and lower instrument use, even

when the underlying preferences ensure precautionary behavior in single-instrument scenarios.

This susceptibility to substitution effects makes self-protection and self-insurance less suited

to identify underlying preferences. In our setting, substitution effects can lead to levels of

precautionary self-protection or precautionary self-insurance that are so low that empiricists

might suspect negative values of relative prudence if it was not for other instruments.

More generally, our paper highlights the need to think carefully about a DM’s portfolio

of instruments. The set of instruments can have important implications for the prediction of

precautionary behavior and the inference of preferences from precautionary choices. People

engage in different kinds of behaviors when they anticipate and manage income risk. So, in

general, the set of instruments that are being used to respond to income risk, will differ across

individuals. Even when instruments are subject to the same qualitative trade-offs, they may

differ to a large extent in their interaction. While challenging from an empirical standpoint,

we are confident that the deliberate consideration of multiple instruments will help improve

our understanding of precautionary motives in the future.
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A Proofs

A.1 Proof of Proposition 1

We show that condition (i) implies that U(s; ε̃) dominates U(s; 0) on [−(w2 + ε− L)/R,w1]

by the interval dominance order while condition (ii) implies the reverse ordering.18 Take s′′

and s′ with s′′ > s′ and U(s′′; 0) ≥ U(s; 0) for all s ∈ [s′, s′′]. Then

U(s′′; 0)− U(s′; 0) ≥ 0 ⇒ U(s′′; ε̃)− U(s′; ε̃) ≥ 0

if, equivalently,

βu
(
CE(w2 + s′′R+ ˜̀))− βu(CE(w2 + s′R+ ˜̀)) ≥ u(w1 − s′)− u(w1 − s′′)

⇒ βu
(
CE(w̃2 + s′′R+ ˜̀))− βu(CE(w̃2 + s′R+ ˜̀)) ≥ u(w1 − s′)− u(w1 − s′′).

Sufficient for the last implication is that

u
(
CE(w̃2 + s′′R+ ˜̀))− u(CE(w̃2 + s′R+ ˜̀))

≥ u
(
CE(w2 + s′′R+ ˜̀))− u(CE(w2 + s′R+ ˜̀)) . (3)

Inequality (3) is satisfied if, for all s ∈ [s′, s′′],

u′
(
CE(w̃2 + sR+ ˜̀)) dCE(w̃2 + sR+ ˜̀)

ds
≥ u′

(
CE(w2 + sR+ ˜̀)) dCE(w2 + sR+ ˜̀)

ds
.

With the help of the implicit function rule, we can rewrite this as follows:

u′
(
CE(w̃2 + sR+ ˜̀))

ψ′
(
CE(w̃2 + sR+ ˜̀))Eψ′(w̃2 + sR+ ˜̀) ≥ u′

(
CE(w2 + sR+ ˜̀))

ψ′
(
CE(w2 + sR+ ˜̀))Eψ′(w2 + sR+ ˜̀).

Now w̃2 + sR + ˜̀ is riskier than w2 + sR + ˜̀ in the sense of Rothschild and Stiglitz (1970),

and the concavity of ψ implies a lower CE for w̃2 + sR+ ˜̀than for w2 + sR+ ˜̀. This decrease

in CE raises the ratio of marginal utilities if u is more concave than ψ. Finally, convexity of

ψ′ ensures that expected marginal utility is higher for the riskier consumption distribution,

which completes the proof of (i).

To demonstrate (ii), the same reasoning as above shows that the reverse of condition (3)

is sufficient for U(s; 0) to dominate U(s; ε̃) on [−(w2+ε−L)/R,w1] by the interval dominance

order. The lower certainty equivalent associated with w̃2 +sR+ ˜̀ lowers the ratio of marginal

18 The domain of U(s; ε̃) is smaller than the domain of U(s; 0) because it does not contain values between
−(w2 − L)/R and −(w2 + ε− L)/R. This does not affect result (i) but may affect result (ii) if U(s; 0) has
maximizers smaller than −(w2 + ε− L)/R. In this case, (ii) holds on the intersection of both domains.
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utilities if u is less concave than ψ. Concavity of ψ′ results in lower expected marginal utility

for the riskier consumption distribution. Combining the two effects completes the proof.

A.2 Proof of Remark 2

If ψ has CARA, we can write ψ(c2) = 1− exp(−αc2) for α > 0. Due to the independence of

ε̃ and ˜̀, we then obtain

CE(w̃2 + s′R+ ˜̀) = w2 −
1

α
lnE exp(−αε̃) + s′R− 1

α
lnE exp(−α˜̀),

and likewise for s′′ instead of s′. Inspecting inequality (3), we see that on both sides CE

increases by (s′′ − s′)R. Income risk reduces CE because lnE exp(−αε̃) > 0, so on the left-

hand side of (3) the increase by (s′′− s′)R occurs at a lower level than on the right-hand-side

of (3). It then follows from the concavity of u that the utility gap is larger on the left-hand

side than on the right-hand side so that the inequality is indeed satisfied.

For self-protection and self-insurance, the argument is similar. An increase in either ac-

tivity lowers lnE exp(−α˜̀), which raises CE. This increase in CE raises felicity by more when

CE is low rather than high. So it is more valuable in the presence of income risk than in its

absence, thus explaining the precautionary demand for either self-protection or self-insurance.

A.3 Proof of Proposition 2

In the case of self-protection, the same steps as in Appendix A.1 show that a sufficient

condition for U(x; ε̃) to dominate U(x; 0) on [0, w1] by the interval dominance order is

u′
(
CE(w̃2 + ˜̀)) dCE(w̃2 + ˜̀)

dx
≥ u′

(
CE(w2 + ˜̀)) dCE(w2 + ˜̀)

dx

for all x ∈ [x′, x′′] with x′′ > x′. We rewrite this with the help of the implicit function rule as:

u′
(
CE(w̃2 + ˜̀))

ψ′
(
CE(w̃2 + ˜̀)) (−p′(x) [Eψ(w̃2)− Eψ(w̃2 − L)]

)

≥
u′
(
CE(w2 + ˜̀))

ψ′
(
CE(w2 + ˜̀)) (−p′(x) [ψ(w2)− ψ(w2 − L)]

)
.

Concavity of ψ implies that the CE of w̃2 + ˜̀ is lower than the CE of w2 + ˜̀. If u is more

concave than ψ, this decrease in CE raises the ratio of marginal utilities. Furthermore, if ψ′

is convex, income risk raises the utility difference between the no-loss state and the loss state.

Combining both effects yields (i).

For (ii), the lower CE associated with w̃2 + ˜̀ now lowers the ratio of marginal utilities

because u is assumed to be less concave than ψ. Moreover, concavity of ψ′ implies that income
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risk lowers the utility difference between the no-loss state and the loss state. This reverses

the above inequality and implies that U(x; 0) �I U(w; ε̃).

In case of self-insurance, similar arguments show that condition (i) implies

u′
(
CE(w̃2 + ˜̀))

ψ′
(
CE(w̃2 + ˜̀)) (−L′(y)Eψ′(w̃2 − L(y))

)
≥
u′
(
CE(w2 + ˜̀))

ψ′
(
CE(w2 + ˜̀)) (−L′(y)ψ′(w2 − L(y))

)
,

while condition (ii) yields the reverse inequality for any y ∈ [0, w1]. So U(y; ε̃) �I U(y; 0)

under (i) and U(y; 0) �I U(y; ε̃) under (ii), and Theorem 1 completes the proof.

A.4 Proof of Proposition 3

For the proof, we rank U(a; ε̃′) and U(a; ε̃′′) on [a, a] by the interval dominance order. Take

a′′ and a′ with a′′ > a′ and U(a′′; ε̃′) ≥ U(a; ε̃′) for all a ∈ [a′, a′′]. Then

U(a′′; ε̃′)− U(a′; ε̃′) ≥ 0 ⇒ U(a′′; ε̃′′)− U(s′; ε̃′′) ≥ 0

if, equivalently,

βu
(
CE(w2 + ε̃′ + ˜̀a′′))− βu(CE(w2 + ε̃′ + ˜̀a′)) ≥ u(w1 − a′)− u(w1 − a′′)

⇒ βu
(
CE(w2 + ε̃′′ + ˜̀a′′))− βu(CE(w2 + ε̃′′ + ˜̀a′)) ≥ u(w1 − a′)− u(w1 − a′′),

where ˜̀a′ and ˜̀a′′ are distributed according to F (`; a′) and F (`; a′′). This implication holds if

u
(
CE(w2 + ε̃′′ + ˜̀a′′))− u(CE(w2 + ε̃′′ + ˜̀a′))

≥ u
(
CE(w2 + ε̃′ + ˜̀a′′))− u(CE(w2 + ε̃′ + ˜̀a′)) . (4)

We introduce H(`; t) = tF (`; a′′) + (1 − t)F (`; a′) for t ∈ [0, 1] as the parameterized change

from F (`; a′) to F (`; a′′) in the spirit of Jindapon and Neilson (2007). If ˜̀t is distributed

according to H(`; t), we can use the fundamental theorem of calculus to rewrite the left-hand

side of inequality (4) as follows:

u
(
CE(w2 + ε̃′′ + ˜̀1))− u(CE(w2 + ε̃′′ + ˜̀0)) =

∫ 1

0

∂u
(
CE(w2 + ε̃′′ + ˜̀t))

∂t
dt.

Therefore, a sufficient condition for (4) is that

∂u
(
CE(w2 + ε̃′′ + ˜̀t))

∂t
≥
∂u
(
CE(w2 + ε̃′ + ˜̀t))

∂t
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for all t ∈ [0, 1] because integration respects monotonicity. Using the chain rule and the

implicit function rule, we can rewrite this as follows:

u′
(
CE(w2 + ε̃′′ + ˜̀t))

ψ′
(
CE(w2 + ε̃′′ + ˜̀t)) ·

[
Eψ(w2 + ε̃′′ + ˜̀a′′)− Eψ(w2 + ε̃′′ + ˜̀a′)]

≥
u′
(
CE(w2 + ε̃′ + ˜̀t))

ψ′
(
CE(w2 + ε̃′ + ˜̀t)) ·

[
Eψ(w2 + ε̃′ + ˜̀a′′)− Eψ(w2 + ε̃′ + ˜̀a′)] .

If ψ is Mth-degree risk-averse, the Mth-degree risk increase from ε̃′ to ε̃′′ lowers expected

utility due to Theorem 2, which in turn lowers CE. This decrease in CE raises the ratio of

marginal utilities if u is more concave than ψ. In this case,

u′
(
CE(w2 + ε̃′′ + ˜̀t))

ψ′
(
CE(w2 + ε̃′′ + ˜̀t)) ≥

u′
(
CE(w2 + ε̃′ + ˜̀t))

ψ′
(
CE(w2 + ε̃′ + ˜̀t)) .

Furthermore, if ψ is (M + N)th-degree risk-averse, the Nth-degree risk increase from ˜̀
a′′ to˜̀

a′ lowers expected utility by more when the income risk has higher Mth-degree risk. So

the change from ˜̀
a′′ to ˜̀a′ lowers expected utility by more in the presence of ε̃′′ than in the

presence of ε̃′. This follows from the Corollary in Eeckhoudt et al. (2009) and from Ebert

et al.’s (2018) results on mutual aggravation. Mathematically, we obtain

Eψ(w2 + ε̃′′ + ˜̀a′′)− Eψ(w2 + ε̃′′ + ˜̀a′) ≥ Eψ(w2 + ε̃′ + ˜̀a′′)− Eψ(w2 + ε̃′ + ˜̀a′).
Nth-degree risk aversion ensures that the right-hand side is nonnegative. Combining the

inequalities then shows that U(a; ε̃′′) �I U(a; ε̃′) on [a, a], and Theorem 1 yields

arg max
a∈[a,a]

U(a; ε̃′′) ≥S arg max
a∈[a,a]

U(a; ε̃′).

Optimal Nth-degree risk reduction increases in the strong set order following the Mth-degree

risk increase of the income risk. Results (ii)-(iv) can be shown analogously.

A.5 Proof of Proposition 4

We sign the cross-derivatives of U(s, x), U(s, y) and U(x, y) to show that the objective func-

tions are submodular under our assumptions. The argument of CE is omitted to compress

notation. For saving and self-protection we find

∂2U(s, x)

∂s∂x
= u′′(w1 − s− x) + βu′(CE)

∂2CE

∂x∂x
+ βu′′(CE)

∂CE

∂s

∂CE

∂x

= u′′(w1 − s− x) + βu′(CE)

[
∂2CE

∂x∂x
−
(
−u
′′(CE)

u′(CE)

)
∂CE

∂s

∂CE

∂x

]
.
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The first term is negative because u is concave. The term in square brackets is less than

∂2CE

∂x∂x
−
(
−ψ

′′(CE)

ψ′(CE)

)
∂CE

∂s

∂CE

∂x
(5)

because u is more concave than ψ and CE is increasing in s and x. Applying the implicit

function rule to CE yields:

∂CE

∂s
=

R [p(x)ψ′(c2L) + (1− p(x))ψ′(c2N )]

ψ′(CE)
,

∂CE

∂x
=
−p′(x) [ψ(c2N )− ψ(c2L)]

ψ′(CE)
,

∂2CE

∂s∂x
= −ψ

′′(CE)R [p(x)ψ′(c2L) + (1− p(x))ψ′(c2N )] · (−p′(x)) [ψ(c2N )− ψ(c2L)]

ψ′(CE)3

−R(−p′(x)) [ψ′(c2L)− ψ′(c2N )]

ψ′(CE)
,

with c2L and c2N being shorthand for consumption in the loss state and the no-loss state.

Direct computation then shows that (5) can be simplified to

−R(−p′(x)) [ψ′(c2L)− ψ′(c2N )]

ψ′(CE)
.

This is nonpositive because p is decreasing and ψ is concave. As a result, ∂2U(s, x)/∂s∂x < 0.

In the case of saving and self-insurance, we find

∂CE

∂y
=
−pL′(y)ψ′(c2L)

ψ′(CE)
,

∂2CE

∂s∂y
= −ψ

′′(CE)R [pψ′(c2L) + (1− p)ψ′(c2N )] · (−pL′(y))ψ′(c2L)

ψ′(CE)3
− pL′(y)Rψ′′(c2L)

ψ′(CE)

and ∂2U(s, y)∂s∂y < 0 follows similarly. For self-protection and self-insurance, we obtain

∂2CE

∂x∂y
= −ψ

′′(CE)(−p′(x)) [ψ(c2N )− ψ(c2L)] · (−p(x)L′(y))ψ′(c2L)

ψ′(CE)3
− p′(x)L′(y)ψ′(c2L)

ψ′(CE)

and ∂2U(x, y)∂x∂y < 0 is obtained with similar steps.

A.6 Proof of Proposition 5

We show that U(a1, a2) is submodular in (a1, a2) under our assumptions. Take a′′1 > a′1 and

a′′2 > a′2; in the first period, concavity of u implies

u(w1 − a′1 − a′′2)− u(w1 − a′1 − a′2) ≥ u(w1 − a′′1 − a′′2)− u(w1 − a′′1 − a′2).

In the second period, we would like to show that

u
(
CE(w2 + ˜̀1a′1 + ˜̀2a′′2 )

)
− u

(
CE(w2 + ˜̀1a′1 + ˜̀2a′2)

)
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≥ u
(
CE(w2 + ˜̀1a′′1 + ˜̀2a′′2 )

)
− u

(
CE(w2 + ˜̀1a′′1 + ˜̀2a′2)

)
.

Subscript a′j indicates that ˜̀j is distributed according to Fj(`; a
′
j), and likewise for subscript

a′′j , with j = 1, 2. Define H2(`; t) = tF2(`; a
′′
2) + (1 − t)F2(`; a

′
2) for t ∈ [0, 1], and let ˜̀2t be

distributed according to H2(`; t). We then obtain

u
(
CE(w2 + ˜̀1a′1 + ˜̀2a′′2 )

)
− u

(
CE(w2 + ˜̀1a′1 + ˜̀2a′2)

)
=

∫ 1

0

∂u
(
CE(w2 + ˜̀1a′1 + ˜̀2t ))

∂t
dt,

and likewise for a′′1 instead of a′1. It is therefore sufficient to show that

∂u
(
CE(w2 + ˜̀1a′1 + ˜̀2t ))

∂t
≥
∂u
(
CE(w2 + ˜̀1a′′1 + ˜̀2t ))

∂t

for all t ∈ [0, 1] because integration respects monotonicity. Using the chain rule and the

implicit function rule, the inequality is equivalent to

u′
(
CE(w2 + ˜̀1a′1 + ˜̀2t ))

ψ′
(
CE(w2 + ˜̀1

a′1
+ ˜̀2t )) ·

[
Eψ(w2 + ˜̀1a′1 + ˜̀2a′′2 )− Eψ(w2 + ˜̀1a′1 + ˜̀2a′2)

]

≥
u′
(
CE(w2 + ˜̀1a′′1 + ˜̀2t ))

ψ′
(
CE(w2 + ˜̀1

a′′1
+ ˜̀2t )) ·

[
Eψ(w2 + ˜̀1a′′1 + ˜̀2a′′2 )− Eψ(w2 + ˜̀1a′′1 + ˜̀2a′2)

]
.

Now w2 + ˜̀1
a′1

+ ˜̀2
t has more N1th-degree risk than w2 + ˜̀1

a′′1
+ ˜̀2

t , resulting in a lower CE

because ψ is N1th-degree risk-averse. This decrease in CE raises the ratio of marginal utilities

if u is more concave than ψ so that

u′
(
CE(w2 + ˜̀1a′1 + ˜̀2t ))

ψ′
(
CE(w2 + ˜̀1

a′1
+ ˜̀2t )) ≥

u′
(
CE(w2 + ˜̀1a′′1 + ˜̀2t ))

ψ′
(
CE(w2 + ˜̀1

a′′1
+ ˜̀2t )) .

(N1 + N2)th-degree risk aversion ensures greater mutual aggravation, see Eeckhoudt et al.

(2009) and Ebert et al. (2018). In this case, the N2th-degree risk reduction from ˜̀2
a′2

to ˜̀2a′′2
increases expected utility by more when N1th-degree risk is high rather than low, that is, in

the presence of ˜̀1a′1 instead of ˜̀1a′′1 . As a result,

Eψ(w2 + ˜̀1a′1 + ˜̀2a′′2 )− Eψ(w2 + ˜̀1a′1 + ˜̀2a′2) ≥ Eψ(w2 + ˜̀1a′′1 + ˜̀2a′′2 )− Eψ(w2 + ˜̀1a′′1 + ˜̀2a′2),

and N2th-degree risk aversion ensures that the right-hand side is nonnegative. Combining the

inequalities accordingly shows that U(a1, a2) is indeed submodular in (a1, a2).
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Figure 4: Effect of return parameters R, µ and ν on saving, self-protection, and self-insurance,
respectively. We use the skewed income risk with Eε̃ = 0, σ(ε̃) = $12, 500, and sk(ε̃) = −1.
The squares represent values from the base case with R = 1, µ = 0.0015355 and ν = 0.0012866.

B Return parameters and precautionary behavior

Figure 4 presents the effect of the return parameters in the single-instrument cases for a

skewed binary income risk with sk(ε̃) = −1. Panel (a) analyzes how the gross return R

affects saving behavior. Saving is increasing in R both in the presence and in the absence of

income risk, corresponding to the solid and the dashed line. The effect is slightly stronger

when no income risk is present. As a result, precautionary saving is decreasing in the gross

return R as represented by the dotted line.

Panels (b) and (c) show how self-protection and self-insurance depend on the respective

efficiency parameters µ and ν. We implement both technologies with a log-linear specification

so that a higher efficiency parameter has two conflicting effects. It lowers the loss probability

or loss severity for a given investment in self-protection or self-insurance, thus decreasing the

need for additional use of the instrument. At the same time, a higher efficiency parameter

increases the impact of additional investments thus exerting a positive effect on instrument

use. This tension explains the inverted U-shapes in Panels (b) and (c) in the absence of

income risk (solid line), in the presence of income risk (dashed line), and for precautionary

instrument use (dotted line).
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C Online Appendix

C.1 Proof of Remark 1

Second-period consumption is given by c̃2 = w̃2 + sR+ ˜̀with an expected value of

Ec̃2 = w2 + sR+ E˜̀= w2 + sR− p(x)L(y).

It is increasing in s, x and y under our assumptions. Now let mn denote the nth central

moment of a random variable. We obtain

mn (c̃2) = E (c̃2 − Ec̃2)n = E
(
w̃2 + sR+ ˜̀− w2 − sR− E˜̀)n = E

(
ε̃+ ˜̀− E˜̀)n

so that saving has no effect on any higher-order central moments. For self-protection and

self-insurance, we first apply the binomial formula,

mn(c̃2) =

n∑
k=0

(
k

n

)
·mk(ε̃) ·mn−k(˜̀),

to express mn(c̃2) as a function of the central moments of the income risk and the loss risk.

By definition, m0(ε̃) = m0(˜̀) = 1 and m1(ε̃) = m1(˜̀) = 0, and for k ≥ 2 we obtain

mk(˜̀) = p(x)(1− p(x))L(y)k ·
k−1∑
l=1

(
k − 1

l

)
· (−1)l+1 · p(x)k−l−1.

Therefore, the variance of second-period consumption is given by

m2(c̃2) = m2(ε̃) +m2(˜̀) = m2(ε̃) + p(x)(1− p(x))L(y)2,

which is the sum of the variances of the income risk and the loss risk due to independence.

So m2(c̃2) is decreasing in self-protection if and only if p(x) < 1/2. It is always decreasing in

self-insurance.

Skewness is the third standardized moment of a random variable,

sk(c̃2) =
m3(c̃2)

m2(c̃2)3/2
=
m3(ε̃)− p(x)(1− p(x))(1− 2p(x))L(y)3

[m2(ε̃) + p(x)(1− p(x))L(y)2]3/2
.

It is not a simple function of the skewness of the income risk and the skewness of the loss risk.

To determine the effect of self-protection on sk(c̃2), we inspect the numerator of dsk(c̃2)/dx,

which, after some simplifications, is given by

−p′(x)L(y)2
[
m2(ε̃) + p(x)(1− p(x))L(y)2

]1/2 · {p(x)2
(
6L(y)m2(ε̃) + 1

2L(y)3
)

−p(x)
(
6L(y)m2(ε̃) + 1

2L(y)3 + 3m3(ε̃)
)

+
(
L(y)m2(ε̃) + 3

2m3(ε̃)
)}
.
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sk(ε̃) 0 -0.5 -1.0 -1.5 -2.0

q 0.50 0.38 0.28 0.20 0.15

ε− -$12,500 -$16,010 -$20,225 -$25,000 -$30,178

ε+ $12,500 $9,760 $7,725 $6,250 $5,178

σ(δ̃) 0.26 0.27 0.30 0.32 0.36

Table 9: Parameters for skewed binary income risks. We set Eε̃ = 0, σ(ε̃) = $12, 500 and vary
sk(ε̃) from 0 to −2 in decrements of 0.5. This implies unique values for q, ε− and ε+. We
also report the standard deviation of the implied annual log earnings growth δ̃.

The sign coincides with the sign of the curly bracket, which is a quadratic function in p(x).

It is tedious but straightforward to show that the associated discriminant is strictly positive

so there are always two zeros, denoted by p1 and p2. Per direct computation, one can also

show that three cases are possible. If σ(ε̃)sk(ε̃) ≥ 2
3L(y), then 0 < p1 < 1 ≤ p2, and the curly

bracket is positive for p(x) < p1 and negative for p(x) > p1; if −2
3L(y) < σ(ε̃)sk(ε̃) < 2

3L(y),

then 0 < p1 < p2 < 1, and the curly bracket is positive for p(x) ∈ (0, p1)∪ (p2, 1) and negative

for p(x) ∈ (p1, p2); if σ(ε̃)sk(ε̃) ≤ −2
3L(y), then p1 ≤ 0 < p2 < 1, and the curly bracket is

negative for p(x) < p2 and positive for p(x) > p2. Remark 1 focuses on those cases where

p1 > 0 so that self-protection increases sk(c̃2) for p(x) < p1.

For self-insurance, the numerator of dsk(c̃2)/dy is the following:

−3p(x)(1−p(x))L(y)L′(y)
[
m2(ε̃) + p(x)(1− p(x))L(y)2

]1/2
[(1− 2p(x))L(y)m2(ε̃) +m3(ε̃)] .

The sign coincides with the sign of the second square bracket. It is positive if and only if

p(x) <
1

2

(
1 +

1

L(y)
σ(ε̃)sk(ε̃)

)
.

C.2 Parameterization of skewed income risks

To analyze the effect of downside risk on precautionary behavior, we use skewed income risks

ε̃ = [q, ε−; (1− q), ε+] in Section 5. We set Eε̃ = 0, σ(ε̃) = $12, 500, corresponding to 25% of

annual income, and vary sk(ε̃) from 0 to −2 in decrements of 0.5. We apply Ebert’s (2015)

Proposition 1 to find the unique q ∈ (0, 1), ε− < 0 and ε+ > 0 consistent with the first three

moments of the income risk. Table 9 provides these parameters and also states the standard

deviation of the implied log earnings growth, defined as δ̃ = log(1 + ε̃/w2). The skewness of

the log earnings growth coincides with the skewness of the income risk because skewness is

solely determined by the probabilities for binary risks, and does not depend on the outcomes.
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