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Abstract

We investigate the presence of a “prudent” savings attitude at the macroeconomic level

with a Real-Business-Cycle model. We extend the consumer side of the model with an

“expo-power” utility function, a two-parameter specification that can generate an array of

coefficients of risk aversion and prudence. We estimate the model on US macroeconomic data

using the particle-filter maximum-likelihood method, and find evidence for weak decreasing

relative prudence. We examine the “social” discount rate associated with our estimates.

Although the discount effect is small in percentage-point terms, the value differentials over

long horizons or at large scales can potentially be significant.
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1 Introduction

As formulated by Kimball (1990), “prudence” describes the intensity of the precautionary-savings

motive due to risk. In an expected-utility framework, it can be captured by a positive third deriva-

tive of the utility function (cf. Leland 1968, Sandmo 1970, Drèze and Modigliani 1972). The effects

of prudence have been investigated in a variety of theoretical contexts, such as the likely concav-

ity of the consumption function (Carroll and Kimball 1996, 2001), the effect of background risk

on risk-taking behavior (Gollier and Pratt 1996), asset demand arising from return predictability

(Gollier 2004, 2008), and the term structure of interest rates (Gollier 2010). Importantly, under

fairly general conditions, decreasing relative risk aversion – which arises when relative prudence

is sufficiently stronger than relative risk aversion – causes the so-called “social discount rate” to

decline over time (Gollier 2002a,b), leading to optimal savings paths that give relatively higher

weight to long-term outcomes than would arise otherwise.

Although a multitude of theoretical results regarding prudence have been established, there

have been few explicit attempts to empirically assess the curvature of marginal utility function

that should be observed if prudence is present.1 An early attempt by Dynan (1993) estimated

a second-order Taylor approximation to the consumption Euler equation, and found a negligible

coefficient of relative prudence.2 Using varied methodologies and datasets, other studies have

generally found higher, though mutually inconsistent values (cf., Kuehlwein 1991, Merrigan and

Normandin 1996, Eisenhauer 2000, Ventura and Eisenhauer 2006). Parker and Preston (2005) use

a more detailed decomposition of the consumption Euler equation to study the relative importance

of four proximate causes for movements in average consumption growth. They find movements in

the precautionary term to impact on the variance of predictable movements in consumption in the

same order of magnitude as movements in the real interest rate.

Carroll (2001) sharply criticized these reduced-form approaches for their inescapable identifica-

1Of course, third derivatives of the utility function are implicit in any structural model involving expected utility,
so estimates of such models necessarily contain prudential implications. However, these third-derivative effects and
their consumption-smoothing implications are rarely studied in their own right.

2Dynan used a power-utility specification in the Euler equation, which implies a coefficient of relative prudence
equal to 1 + � , where � is the coefficient of relative risk aversion. She found 1 + � ∈ [0.14, 0.166], which makes
� inconsistent with macroeconomic evidence (cf. Meyer and Meyer 2005). Lee and Sawada (2007) re-estimated
this model with liquidity constraints and found the still-incompatible values 1 + � ∈ [0.838, 1.094]. These results
illustrate the potential susceptibility of prudential estimates to specification and approximation error.
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tion issues.3 And indeed, more recently, precautionary-savings effects have instead been estimated

via structural approaches.

Taking up the structural approach, we introduce prudential flexibility into a Real Business Cycle

model using the “expo-power” utility function of Saha (1993), a two-parameter specification that

can capture a wide array of risk attitudes. Depending on the parametrization, this specification

can capture increasing, decreasing, and constant risk aversion and prudence.

Using the particle-filter maximum-likelihood method described in Fernández-Villaverde and

Rubio-Ramı́rez (2005), we estimate our extended model on US macroeconomic data. We find

evidence of decreasing relative risk aversion and decreasing relative prudence. Although the “de-

creasing” feature appears to be weak (in terms of the magnitudes of the coefficients), we can reject

several alternative hypotheses involving constant relative risk aversion and prudence. Importantly,

although the implicit social discount rate is at most a few tenths of a percentage point different

from that implied by constant relative risk aversion, this small difference can potentially generate

a large difference in expected value for economic activities with a long horizon.

The remainder of this paper is structured as follows. Section 2 describes our modified Real

Business Cycle model, and how the parameters are likely to be identified. Section 3 describes our

data and estimates, and provides some side-by-side graphs of the difference in trajectories relative

to a log-utility counterfactual. Section 4 describes the how our results can be interpreted in the

light of the social discount rate.

2 A Modified Real Business Cycle Model

The central feature of our model is Saha’s expo-power utility function:

u (x) =
1

�

[

1− exp

(

−
�

1− �
x1−�

)]

3Related discussions can be found in Gourinchas and Parker (2002a) and Ludvigson and Paxson (2001).
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It is fairly easy to show that this specification nests exponential utility (� = 0) and power utility

(� → 0). The coefficients of absolute and relative risk aversion are

ARA (x) =
�

x�
+
�

x
RRA (x) =

�

x�−1
+ � (1)

and the coefficients of absolute and relative prudence are

AP (x) = ARA (x) +
ARA′ (x)

ARA (x)
RP (x) = RRA (x) +

ARA′ (x)

ARA (x)
x (2)

The presence of increasing or decreasing relative risk aversion is controlled by the combination

of � and �. For example, � > 0 and � > 1 generates decreasing relative risk aversion, with

limx→∞RRA (x) = �. And, � > 0 and � < 1 generates increasing relative risk aversion, with

limx→∞RRA (x) = ∞.

These limiting features of expo-power utility under various parametrizations can suggest the

type of estimates we might expect in macroeconomic data. When utility is additively-separable

over time, it is well-known that the elasticity of intertemporal substitution � is given by

1

�t
= RRA (xt)

If there is no intertemporal elasticity to the consumption of x, then we ought to observe increas-

ing relative risk aversion, because a positive � and a small � will cause � to tend towards 0 as

consumption increases over time. However, if there is some elasticity, then we ought to observe

decreasing relative risk aversion. In this case, � will depend upon the level of x, but will eventually

converge to 1/� as x increases.4

In the Real Business Cycle model, a consumer’s utility is a function of both consumption c

4Our estimates indicate that decreasing relative risk aversion (and prudence) is the best fit on US macroeconomic
data. However, other estimates of the expo-power parameters have suggested the presence of increasing relative
risk aversion. For example, Holt and Laury (2002) find a best fit of � = 0.029 and � = 0.269 on data from lottery-
choice experiments. This difference underscores the potential danger of too strongly associating a “coefficient of risk
aversion” with a “risk attitude” in an intertemporal model. In the intertemporal setting, the coefficient of relative
risk aversion is equivalent to the elasticity of intertemporal substitution. It is consumption-adjustment patterns
that are being estimated, which may differ from a risk attitude. For example, Kimball and Weil (2009) analyze
prudence in an intertemporal setting using a model that disentangles the two concepts, and find that there are
potentially two separate effects that can operate simultaneously to determine the degree of prudence.
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and leisure ℎ. This concept is usually operationalized by putting utility over an aggregate index

x = � (c, ℎ). When this occurs, we are usually most interested in the elasticity of intertemporal

substitution with respect to consumption, given by

1

�ct
= ARA (� (ct, ℎt))�c (ct, ℎt) ct +

�cc (ct, ℎt) ct
�c (ct, ℎt)

(3)

Following Aruoba et al. (2006), we use a Cobb-Douglas aggregator function � (c, ℎ) = c�ℎ1−�, so

that

�c (c, ℎ) =

(

ℎ

c

)1−�

and

�cc (c, ℎ) c

�c (c, ℎ)
= 1− �

Equation (3) provides some insight into how the expo-power parameters can be identified. As the

economy receives stochastic shocks, consumers will probably change their intertemporal consump-

tion ratios in response (unless �ct = 0). The correlation between this response and the level of �

determines the values of � and �. Thus, conditional on �, the parameters � and � can be identified

by variation in intertemporal substitution elasticities.

The remainder of our model is fairly standard. Briefly, it consists three parts.

1. Market clearing. At time t, the economy consists of a population Pt of identical customers,

and a representative firm. Three markets operate: one each for capital Kt, labor Lt, and

a consumption-investment numeraire Yt. Denoting firm quantities by an uppercase letter

and consumer quantities by the corresponding lowercase letter, market clearing at time t is

defined by prices rt (for capital) and wt (for labor) such that

Kt = Ptkt (Capital Market Clears)

Lt = Ptlt (Labor Market Clears)

Yt = Ptyt (Numeraire Clears)

2. Firm. At time t, the firm possesses a production technology Ft. It rents capital Kt at rate rt
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and hires labor Lt at rate wt, and uses these inputs to produce Yt units of the the numeraire

good. Its profit-maximization problem is

max
{Kt,Lt}

E0

[

∞
∑

t=0

Yt − rtKt − wtLt

]

s.t. Yt ≤ Ft (Kt, Lt)

As is usual in the Real Business Cycle formulation, we take the production technology Ft to

be the Cobb-Douglas form Ft (Kt, Lt) = AtK


t L

1−

t . Uncertainty in the model arises due to

fluctuations in the total factor productivity At. These fluctuations have the lognormal form

ln (At+1) =  ln (At) + "At , where "
A
t ∼ i.i.d. N (0, �2

A).

3. Consumer. Each consumer enters the period with a personal capital stock kt and a time

endowment (normalized to 1 unit) that can be allocated between labor lt and leisure ℎt.

The consumer rents capital at rate rt, and receives wage wt for labor. The consumer allo-

cates this income to purchasing yt units of the numeraire good, which it allocates between

consumption ct and capital investment it. Capital depreciates at a rate �. The consumer’s

utility-maximization problem is5

max
{ct,lt,kt+1}

Eo

[

T
∑

t=0

�tu (� (ct, ℎt))

]

s.t.

⎧









⎨









⎩

yt = ct + it ≤ rtkt + wtlt

it =
Pt+1

Pt
kt+1 − (1− �) kt

lt + ℎt = 1

At time t, there are three three first-order conditions on the consumer side

Et

[

�
u′ (� (ct+1, ℎt+1))�c (ct+1, ℎt+1)

u′ (� (ct, ℎt))�c (ct, ℎt)
⋅
Pt

Pt+1

⋅ (1− � + rt+1)

]

= 1 (4)

�ℎ (ct, ℎt)

�c (ct, ℎt)
= wt (5)

rtkt + wtlt = ct + it (6)

5Our formulation of the investment identity takes into account future population growth. From the perspective

of time t, a consumer’s share of the time-(t + 1) capital stock is Kt+1/Pt. However, because we have defined
kt = Kt/Pt ∀t (through the market-clearing condition on capital), clearly Kt+1/Pt = (Pt+1/Pt) kt+1 ∕= kt+1 (unless
Pt+1 = Pt). Because absolute levels are important in the analysis of prudent risk attitudes, we retain the possibility
of (deterministic) population growth to get a more precise estimate of the individual capital stock.
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There are also two first-order conditions on the firm side:

rt = 
At

(

Lt

Kt

)1−


(7)

wt = (1− 
)At

(

Kt

Lt

)


(8)

These equations provide insight into how the remaining parameters can be identified. The value of


 can be identified by changes in the capital/labor ratio over time (equations (7) and (8)), which

feed into the consumer’s total expenditure (equation (6)). Similarly, the values of  and �A can be

identified by fluctuations in output which uniformly raise incomes in a manner uncorrelated with

the capital/labor ratio. Finally, conditional on 
, the value of � can be found by variation in the

consumption/leisure ratio for various wage levels (equation (5)).

3 Estimates and Trajectories

Estimating the model from the previous section involves repetitions of a two-stage algorithm:

1. Solve the model’s policy function for a given parametrization.

2. Given a solution to the policy function, approximate the likelihood function.

Fernández-Villaverde et al. (2006) note that the methodology in each stage has important im-

plications for the accuracy of the overall solution. In particular, a second-order error in the

policy-function solution generates a first-order error in the likelihood function. Errors in the pol-

icy function have also been shown to provide questionable welfare estimates (e.g., the “spurious

welfare reversals” found by Kim and Kim 2003).

Computational methodology is thus an important aspect of this paper, both from the per-

spective of obtaining more precise estimates, and from the ability to potentially undertake policy

analysis with the model. We use the bootstrap particle filter described in Fernández-Villaverde and

Rubio-Ramı́rez to approximate the likelihood function, and the Chebyshev-polynomial approxi-

mation described in Aruoba et al. to approximate the policy functions. The respective authors
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show that these are two of the most accurate methods in their respective stages. A more detailed

description of our method can be found in Appendix A.

It is important to note that the results presented here are from a scaled-down version of the

computational algorithm. Our method relies heavily on nested simulations, and the computational

requirements grow exponentially as additional simulations are added in each level of the nest.

Hence, our results are probably affected by small-sample simulation error. (This is the primary

reason that we do not present standard errors, because the simulated likelihood function is not

well-behaved in the neighborhood of the maximum we found.) However, the method can be scaled

up through parallelization to a level that ameliorates this particular error.

Also, due to the ill-behaved likelihood function, we use a stochastic-search method to maximize

the likelihood function instead of a derivative-based method. As a result, our reported values may

not represent an exact maximum. We began the search at the parameter values estimated by

Fernández-Villaverde and Rubio-Ramı́rez, who use data and methodology similar to ours.

Our dataset consists of seasonalized US quarterly data on consumption and investment, monthly

data of labor hours, and yearly population data.6 The resulting time coverage is 1964:Q1 to

2009:Q3. The monthly population data are first used to estimate a monthly population growth

rate g using the simple growth model

ln (Popt) = g + ln (Popt−1) + "Pt

A time-series of population data for use in the model is then imputed using the recursion Pt =

e3gPt−1. This imputed series is used to convert aggregates into per-capita values. 7

Table 1 presents parameter estimates for the fitted model. The values � = 0.082 and � =

1.699 suggest decreasing relative risk aversion and decreasing relative prudence. Relative to other

6The dataset identifiers are POP (population, monthly), PECC96 (consumption, quarterly), GPIDC96 (gross
private domestic investment, quarterly), and AWHNONAG (weekly hours, monthly) from the Federal Reserve Bank
of St. Louis FRED database. We translate POP and AWHNONAG into quarterly values by averaging the values
for the 3 months in each quarter.

7We use this smoothed population series instead of the actual one because there are small fluctuations in
population. Instead of incorporating population uncertainty into the model (with probably little effect), we simply
use the growth rate g in each time period. The smoothed population series is always within 1% of the actual
population series.
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US (quarterly) Baseline Counterfactual
� 0.472 (same)
� 0.997 (same)
� 0.082 0
� 1.699 1

 0.297 (same)
� 0.008 (same)
 0.974 (same)
�A 0.0003 (same)
ll -4986.3 -5102.3

Table 1:
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Figure 1:

estimates of the Real Business Cycle model, these estimates show a slightly lower capital share of

output, and a lower standard deviation of productivity shocks. The alternative specification of log

utility can be easily rejected with a likelihood-ratio test. And, in fact, many other power-utility

specifications can also be rejected.

Referring to equation (1), the “decreasing” feature is primarily controlled by the value of �,

which appears to be relatively small. In addition, the effect diminishes as consumption increases,

and consumption is already relatively high in magnitude (thousands of dollars, with � = 0.472).

Figure 1 plots the implicit change in relative risk aversion over time. Both relative risk aversion

and relative prudence do fall over time, but the effect appears to be small.

Finally, some summary trajectories from this model are presented in Figure 2. The difference

between these series and a log-utility baseline are provided for comparison. As one might expect,

the effect of the increased prudence can be seen in the higher capital accumulation rate and lower
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consumption rate.

4 Policy Implications

It is difficult to assess the importance of declining relative prudence in our model by just looking

at the magnitude of the coefficient. After all, utility is over a unitless aggregate index �. Gollier

(2002a) provides a means for us to assess the policy importance of our estimates via the social

discount rate implied by our model. The social discount rate is related to the stochastic discount

factor in equation (4):

Et

[

�
u′ (� (ct+1, ℎt+1))�c (ct+1, ℎt+1)

u′ (� (ct, ℎt))�c (ct, ℎt)

]

=
1

1 + dt

Gollier shows that in the face of an uncertain future consumption stream prudence causes dt

to be smaller that under certainty, and that dt will decrease (increase) with the time horizon if

relative risk aversion is decreasing (increasing). By implication, future outcomes receive more (less)

weight than they would otherwise have. This can have important implications for policy questions

that involve economy-wide, long-horizon events (e.g., climate change or retirement), because it

is difficult to derive a discount rate for such outcomes. The social discount rate indicates that

the appropriate discounting scheme is endogenous to the model, and is dependent upon the likely

consumption path and the prevailing risk attitudes.

Figure 3 plots the implicit social discount rate from our model with an alternative log-utility

specification. The increased prudence in our model does indeed generate a declining discount rate,

and the discount rate is higher than under the alternate specification. The differential is about 0.5

percentage points per quarter at the beginning of the sample, and declines to about 0.01 percentage

points by the end.

The effects of decreasing relative prudence appear relatively small in percentage-point terms.

However, consider that a differential of 0.5% in the growth of $1 yields about a $1.75 difference

in value after 100 quarters, and a differential of 0.01% yields about a $0.02 difference. When

evaluating policies that involve time horizons such as these or longer, and that involve billions or
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trillions of dollars, such a valuation differential can translate into a very large amount. In such a

scenario, care is needed in choosing a specification for dt, and our results suggest that a non-trivial

formulation of prudence can play a role in this choice.
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Jesús Fernández-Villaverde, Juan F. Rubio-Ramı́rez, and Manuel F. Santos. Convergence Proper-

ties of the Likelihood of Computed Dynamic Models. Econometrica, 74(1):93–119, 2006.

Christian Gollier. Discounting an uncertain future. Journal of Public Economics, 85(2):149–166,

2002a.

Christian Gollier. Time Horizon and the Discount Rate. Journal of Economic Theory, 107(2):

463–473, 2002b.

Christian Gollier. Optimal Portfolio Risk with First-Order and Second-Order Pre-

dictability. Contributions to Theoretical Economics, 4(1), 2004. Available at:

http://www.bepress.com/bejte/contributions/vol4/iss1/art4.

Christian Gollier. Understanding saving and portfolio choices with predictable changes in asset

returns. Journal of Mathematical Economics, 44(5-6):445–458, 2008.

Christian Gollier. Pricing the future: The economics of discounting and sustainable development.

2010. Unpublished manuscript, to appear with Princeton University Press, Princeton, NJ.

Christian Gollier and John W. Pratt. Risk Vulnerability and the Tempering Effect of Background

Risk. Econometrica, 64(5):1109–1123, 1996.

Pierre-Olivier Gourinchas and Jonathan A. Parker. The Empirical Importance of Precautionary

Saving. American Economic Review, 91(2):406–412, 2002a.

Charles A. Holt and Susan K. Laury. Risk Aversion and Incentive Effects. American Economic

Review, 92(5):1644–1655, 2002.

Jinill Kim and Sanghyun Henry Kim. Spurious welfare reversals in international business cycle

models. Journal of International Economics, 60(2):471–500, 2003.

Miles Kimball and Philippe Weil. Precautionary Saving and Consumption Smoothing across Time

and Possibilities. Journal of Money, Credit and Banking, 41(2-3):245–284, 2009.

Miles S. Kimball. Precautionary Saving in the Small and in the Large. Econometrica, 58(1):53–73,

1990.

Michael Kuehlwein. A test for the presence of precautionary saving. Economics Letters, 37(4):

471–475, 1991.

13



Jeong-Joon Lee and Yasuyuki Sawada. The degree of precautionary saving: A reexamination.

Economics Letters, 96(2):196–201, 2007.

Hayne E. Leland. Saving and Uncertainty: The Precautionary Demand for Saving. Quarterly

Journal of Economics, 82(3):465–473, 1968.

Sydney Ludvigson and Christina H. Paxson. Approximation Bias in Linearized Euler Equations.

Review of Economics and Statistics, 83(2):242–256, 2001.

Philip Merrigan and Michel Normandin. Precautionary Saving Motives: An Assessment from UK

Time Series of Cross-Sections. Economic Journal, 106(438):1193–1208, 1996.

Donald J. Meyer and Jack Meyer. Relative Risk Aversion: What Do We Know? Journal of Risk

and Uncertainty, 31(3):243–262, 2005.

Jonathan A. Parker and Bruce Preston. Precautionary Saving and Consumption Fluctuations.

American Economic Review, 95(4):1119–1143, 2005.

Atanu Saha. Expo-Power Utility: A ‘Flexible’ Form for Absolute and Relative Risk Aversion.

American Journal of Agricultural Economics, 75(4):905–913, 1993.

Agnar Sandmo. The Effect of Uncertainty on Saving Decisions. Review of Economic Studies, 30

(3):353–360, 1970.

George Tauchen. Finite State Markov-Chain Approximations to Univariate and Vector Autore-

gressions. Economics Letters, 20(2):177–181, 1986.

Luigi Ventura and Joseph G. Eisenhauer. Prudence and Precautionary Saving. Journal of Eco-

nomics and Finance, 30(2):155–168, 2006.

A Computational Methods

Estimating our model involves two algorithms: one to approximate the policy functions, and one

to approximate the likelihood function.

To approximate the policy functions, we use the Chebyshev-polynomial method described in

Aruoba et al.. Briefly, this method involves computing a functional approximation to the labor

policy function l (A, k, P ). Note that once the state variables A, K, and P are available, as well as

the labor value l, then r and w can be immediately computed using equations (7) and (8). Equation
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(5) can then be used to recover c (using a nonlinear root-finding algorithm), and equation (6) can

be used to recover i. The form of our functional approximation is

l (A, k, P ) ≃

MA
∑

mA=0

Mk
∑

mk=0

MP
∑

mP=0

!mA,mk,mP
'mA

(A)'mk
(k)'mP

(P )

where 'm denotes the Chebyshev polynomial of degree m, and {!mA,mk,mP
}MA,Mk,MP

mA=0,mk=0,mP=0 are

weights to be estimated.8

To find these weights, the free first-order condition 4 is used as an estimating equation. Trial

points

{Ai, ki, Pi}
(MA+1)(Mk+1)(MP=1)
i=1

are generated from the nodes of the (MA + 1)-, (Mk + 1)- and (MP + 1)-degree polynomials, by

taking all possible combinations of the node points. Each trial point can be individually applied

to equation 4, for a total of (MA + 1) (Mk + 1) (MP + 1) equations. This exactly-identified system

can be solved for the weights by a nonlinear root-finding algorithm.9

To approximate the likelihood function, we use the bootstrap particle-filter method described

in Fernández-Villaverde and Rubio-Ramı́rez. For a particular parametrization of the model,

this method approximates the likelihood using a “swarm” of “particles.” In our case, a parti-

cle
(

"A,t,n, Sn
0

)

is composed of a history of shocks "A,t,n =
{

"A,n
0 , . . . , "A,n

t

}

and an initial state

Sn
0 = {An

0 , k
n
0 , P

n
0 }. Given a swarm (i.e., draws) of N such particles from time t− 1, the likelihood

contribution for time t can be computed as follows:

1. Draw a “transition swarm”
{

"A,t∣t−1,n, Sn
0

}N

n=1
by sampling from

p
(

"A,t∣yt, S0

)

= fA
(

"At
)

p
(

"t−1∣ct−1, lt−1, it−1, S0

)

8Because the Chebyshev polynomials are defined over [−1, 1], A, k, and P must be first mapped into this domain.
We choose a linear mapping such that the bounds are unlikely to be reached in our dataset: A ∈ [0.75, 1.25],
k ∈

[

5000, 1× 106
]

, P =
[

100× 106, 400× 106
]

.
9Because equation 4 contains an expectation, we also construct an integral approximation using an integration-

by-simulation strategy with 100 simulations of "At+1. For stability, we preserve the underlying standard normal
values across iterations.
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The time-(t− 1) swarm
{

"A,t−1,n, Sn
0

}N

n=1
is already a sample from p ("t−1∣ct−1, lt−1, it−1, S0).

Thus, the transition swarm can be drawn by sampling N particles from the entering swarm,

and adding to each one a draw from fA.

2. Assign weights {qnt }
N

n=1 to each particle in the transition swarm, where

qnt =
p
(

cnt , l
n
t , i

n
t ∣"

A,t−1,n, Sn
0

)

∑N

m=1 p (c
m
t , l

m
t , i

m
t ∣"

A,t−1,mSm
0 )

In our case, the density p
(

cnt , l
n
t , i

n
t ∣"

A,t−1,n, Sn
0

)

is simply the likelihood of the “measurement

errors” corresponding to that particular particle:

p
(

cnt , l
n
t , i

n
t ∣"

A,t−1,n, Sn
0

)

= fc ("
c,n
t ) fl

(

"l,nt

)

fi
(

"i,nt
)

The measurement errors denote the discrepancy between the model prediction and the em-

pirical observation. Letting c̄t, l̄t, and īt − �kt denote the empirical analogs of the model

outputs,10 the distribution of these errors is

∙ "ct = ct − c̄t ∼ i.i.d N (0, �2
c )

∙ "lt = lt − l̄t ∼ i.i.d. N (0, �2
l )

∙ "it = it − (̄it − �kt) ∼ i.i.d. N (0, �2
i )

3. The time-t likelihood contribution is

p
(

ct, lt, it∣"
A,t−1, S0

)

≃
1

N

N
∑

n=1

p
(

cnt , l
n
t , i

n
t ∣"

A,t−1,n, Sn
0

)

4. Draw a new swarm
{

"A,t,n, Sn
0

}N

n=1
by sampling from the transition swarm according to the

probability density defined by {qnt }
N

n=1. This new swarm is a draw from p ("t∣ct, lt, it, S0).

Because the state variables A and k are unobservable, initializing the swarm is an issue. Note

that with P0, A0, and a solution to the policy functions in-hand, it is possible to recover kt using

10Because our investment data īt reflect only gross investments, the appropriate comparison is between īt and
it + �kt.
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the free first-order condition 4 (using a nonlinear root-finding algorithm). Hence, we draw A0

using the finite-state approximation of an autoregressive process described in Tauchen (1986). To

initialize the swarm, we sample N times from a 15-state distribution, and obtain the associated k0

for each. Even though the swarm will initially be populated with several identical (A0, k0) pairs,

each will receive a different set of simulated shocks, so each particle will convey unique stochastic

information after the initial period.

The results presented here make use of the polynomials up to degree MA = 5, Mk = 9, and

MP = 9, for a total of (MA + 1) (Mk + 1) (MP + 1) = 600 weights. We also use N = 100 initial

swarm draws. The literature mentioned previously suggests that N should be about 10,000 to

avoid simulation error. Our results here are probably based upon too many samples near the

mode of the swarm distribution, and too few samples from the tails. Scaling up is not of major

concern, but it will likely require parallelization of the algorithm.
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