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1 Introduction

Precautionary saving is a well-established feature of life-cycle consumption, essential to

various fields including the design of social-security and tax systems (Mirrlees et al. 2010),

social discounting (Gollier 2013), and asset allocation (Gomes and Michaelides 2005). De-

spite this ubiquity, its extent and drivers are still subject to debates (e.g., Gourinchas and

Parker 2001, Attanasio and Weber 2010, Choi et al. 2017, Lugilde et al. 2017). An impor-

tant impediment to better empirics could be conceptual restrictions. To date, measuring

and comparing the intensity of precautionary saving motives rest almost exclusively on ex-

pected utility (EU) and only focus on income risk or coefficients of the Arrow-Pratt type.

For more general preferences and alternative risky environments, preference measures that

are theoretically founded and amenable to empirics are not available.

This paper extends characterizations of comparative precautionary saving to higher-

order risk effects under recursive utility (RU) and return risk. We express the comparisons

in terms of precautionary premia. In addition, we provide a new representation based on

preference coefficients. The coefficients give a detailed picture of the different preferences

sustaining precautionary saving and could prove useful in empirical applications.

Under EU, precautionary saving has been studied for a broad set of risks. Eeckhoudt

and Schlesinger (2008) provide the conditions on the utility function guaranteeing higher

saving for increases in income risk or return risk, including higher-order risk effects. Kim-

ball’s (1990) prudence coefficient and precautionary premium are only formulated for a

risk added to nonrandom future income, and do not cover most of the risk events in Eeck-

houdt and Schlesinger. Liu (2014) generalizes Kimball’s precautionary-premium analysis

to accommodate higher-order effects in income risk using an extension of comparative risk

aversion in the sense of Ross (1981). Liu’s contribution is a main ingredient in this paper.

Our analysis starts from the two-period consumption/saving model under RU in Kim-

ball and Weil (2009) (KW). RU disentangles risk preferences and the elasticity of intertem-

poral substitution (EIS), and allows thus to account for risk and intertemporal tradeoffs

not identified in the EU framework.1 Under RU, risk impacts saving via two channels,

1For example, RU has helped to resolve the equity-premium and risk-free-rate puzzles in macroeco-
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marginal expected utility (MEU) and the certainty equivalent (CE) of future consumption

(Bostian and Heinzel 2017). In the MEU channel, precaution works as under EU, so that,

for income risk, the contributions from this channel to the precautionary saving motive

can be compared as in Liu. In the CE channel, the effect of a CE variation on saving

depends on the simultaneous action of risk and intertemporal preferences. RU therefore

helps to cover some less common intuitions. For example, the more risk-averse of two

decision-makers, when having a large EIS, may hold the smaller precautionary motive.

Saving reactions to return risk follow a different intuition compared to income risk.

Because risk exposure is directly endogenous to saving, a competing substitution effect

adds to the precautionary effect. Thus, a prudent decision-maker in the Kimball sense

– who saves more in response to income risk – could well save less when return risk

increases. The multiplicative character of return risk implies that the premium and coef-

ficient measures of the Arrow-Pratt type are not well defined in this context (Briys et al.

1989). To measure the precautionary saving motive under return risk, we adapt Eeck-

houdt and Schlesinger’s (2009) multiplicative risk premium. The comparative statements

we derive resemble the case with income risk but involve an expression linked to the con-

ditions for higher saving under EU. Our main finding is that the sign of the multiplicative

precautionary premium follows the positive or negative direction of the saving reaction.

While this sign ambivalence is perfectly sound theoretically, it limits the practical use

of these premia. Adding to the interpretative difficulty, the premia for multiplicative and

additive risks have different units, and thus cannot be compared. Therefore, we define

a new class of preference coefficients building on Liu and Meyer (2013a,b), and derive

the associated conditions to predict a stronger precautionary motive. The coefficients for

income risk also apply to return risk. But the separate coefficients, controlling the pre-

cautionary and substitution effects, make the conditions under return risk more involved.

Section 2 introduces the decision framework for the analysis. Sections 3 and 4 treat,

in turn, the cases with income risk and return risk. Section 5 develops the representation

of comparative precautionary saving using preference coefficients. Section 6 discusses how

nomics and finance (Hall 1988, Weil 1989, Epstein and Zin 1991, Tallarini 2000, Bansal and Yaron 2004,
Barro 2009, Binsbergen et al. 2012, Martin 2013, Epstein et al. 2014).
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our results fit within the existing literature. Section 7 concludes.

2 Decision Framework

Following KW, we consider a two-period consumption/saving model under RU. The

decision-maker chooses the amount of saving s out of first-period income y1 that maxi-

mizes the intertemporal utility objective

u (y1 − s) + βu
(
CE(ỹ2 + sR̃)

)
(1)

Here, u is the felicity function capturing the preference for consumption smoothing, and β

is the utility discount factor reflecting pure time preference. Second-period consumption

c̃2 consists of income ỹ2 and saving with gross return R̃. Risk may enter through either

ỹ2 or R̃, and a tilde indicates that a variable is risky.2 The certainty-equivalent function

CE(c̃2) ranks future consumption according to the risk preference ψ:

CE(ỹ2 + sR̃) ≡ ψ−1
(
E
[
ψ
(
ỹ2 + sR̃

)])
(2)

Unlike u, ψ is a von Neumann-Morgenstern utility function (Selden 1978). Special cases

of (1) are EU (for ψ = u), and infinite-horizon Epstein and Zin (1989, 1991) and Weil

(1990) utility (for constant relative risk aversion and constant EIS).

According to the first-order optimality condition

u′ (c1) = βu′ (CE(c̃2))CE
′(c̃2) (3)

the decision-maker saves until the marginal utility from foregoing consumption in period 1

(i.e., saving a marginal amount) is equal to the discounted marginal utility from consuming

during period 2 instead. With some abuse of notation for compactness, CE ′ in (3) denotes

2If ỹ2 and R̃ simultaneously carry a tilde, the notation applies to each of the two cases.
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the full derivative of the certainty equivalent with respect to saving :

CE ′(c̃2) ≡
dCE(c̃2)

ds
=

E[ψ′(c̃2)R̃]

ψ′ (CE(c̃2))
(4)

Some restrictions must be placed on u and ψ to fulfill the second-order sufficiency

condition. Namely, both must be increasing and concave, but ψ−1 must also be concave

in s. This requirement is fulfilled if ψ’s absolute risk tolerance – the inverse of absolute risk

aversion – is concave (KW, Gollier 2001). Under these assumptions (which we maintain

throughout), CE ′′(c̃2) < 0, guaranteeing a negative second derivative:

u′′ (c1) + β
[
u′′ (CE(c̃2)) [CE ′(c̃2)]

2
+ u′ (CE(c̃2))CE

′′(c̃2)
]
< 0

Under income risk, optimal saving may be negative, in which case the same return

R applies as for positive saving. When considering return risk, we assume, similar to

Eeckhoudt and Schlesinger (2008), that preferences and incentives are such that they

imply positive saving choices, to simplify the exposition.

When analytically more convenient, we use, like KW, an alternative formulation of

model (1) that applies the Kreps and Porteus (1978) operator φ(.) ≡ u(ψ−1(.)). The

utility objective is then

u (y1 − s) + βφ(Eψ(ỹ2 + sR̃))

and the first-order condition reads

u′ (c1) = βφ′(Eψ(c̃2))E[ψ′(c̃2)R̃] (5)

(3) and (5) are equivalent if ψ is a continuous and monotonically-increasing function. For,

if Eψ(c̃2) is well defined, then, also the certainty equivalent (2) is well defined.

φ’s curvature is a key element in the analysis below. It depends on a simple relationship

of second-order preferences: φ is convex (concave) if and only if the absolute resistance to
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intertemporal substitution, ARISu, is less (greater) than absolute risk aversion, ARAψ:

−u
′′ (CE(c̃2))

u′ (CE(c̃2))
< (>)− ψ′′ (CE(c̃2))

ψ′ (CE(c̃2))
(6)

Because relative resistance to intertemporal substitution is the inverse of EIS, this condi-

tion implies a direct comparison of intertemporal and risk preferences.3

The saving reaction to risk depends on shifts in future marginal utility. Rewriting it

in (3) using (4) and (5) reveals that risk affects future marginal RU via two channels, the

certainty equivalent CE(c̃2) and marginal EU E[ψ′(c̃2)R̃] (Bostian and Heinzel 2017):

u′ (CE(c̃2))CE
′(c̃2) =

u′ (CE(c̃2))

ψ′ (CE(c̃2))
E[ψ′(c̃2)R̃] = φ′(Eψ(c̃2))E[ψ′(c̃2)R̃] (7)

E[ψ′(c̃2)R̃] has a direct positive influence in (7), but the impact of CE is positive (negative)

depending on whether φ is convex (concave). Comparing precautionary saving motives

under RU involves thus comparing the preferences operating in each channel.

To compare risk attitudes, we adopt, like Liu, the notion of (n/m)th-degree Ross more

risk aversion, introduced by Liu and Meyer (2013b).

Definition 1 ((n/m)th-Degree Ross More Risk Aversion) For two utility functions

ψu(x), ψv(x) with sgn
[
ψ

(k)
u (x)

]
= sgn

[
ψ

(k)
v (x)

]
= (−1)k+1 for k = n,m and n > m, ψu(x)

is (n/m)th-degree Ross more risk-averse than ψv(x) if there exists a scalar λ > 0 such

that

ψ
(n)
u (xa)

ψ
(n)
v (xa)

≥ λ ≥ ψ
(m)
u (xb)

ψ
(m)
v (xb)

for all xa, xb ∈ [a, b] ⊆ R+
0 (8)

Definition 1 covers the original Ross more risk aversion when (n,m) = (2, 1) (Ross 1981),

and its nth-degree extension when (n,m) = (n, 1) (Jindapon and Neilson 2007).

To apply this definition to RU, we take ψu and ψv to be the risk preferences associated

with the intertemporal preferences u and v. For our purposes, the pairings (u, ψu) and

(v, ψv) reflect RU preferences that are, like βu and βv, in general, different. For brevity,

we usually drop the u and v subscripts when it is obvious that only one decision-maker’s

3In frameworks with more than two periods, the convexity (concavity) of φ results in an increased
propensity to have risk resolved as soon (late) as possible (Epstein et al. 2014).
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preferences are under discussion.

We compare precautionary saving motives by considering well-defined increases in

risk. We use a special case of nth-degree stochastic dominance (nSD): Liu’s nth-degree

first-`-moments-preserving stochastic dominance (n-`-MPSD) order.4

Definition 2 (nth-degree `-first-Moments-Preserving Stochastic Dominance)

For any integer ` with 1 ≤ ` ≤ n − 1, x̃h is dominated by x̃l in the n-`-MPSD order if

x̃h �nSD x̃l and E
(
x̃jl
)

= E
(
x̃jh
)

for j = 1, . . . , `.

In Definition 2, n indicates the stochastic-dominance degree used to compare the “higher

risk” lottery x̃h and the “lower risk” lottery x̃l, and ` counts how many of their lower

moments are identical. Assuming ` ≥ 1 excludes direct first-order effects. The n-`-MPSD

order has a flexible intermediate position between Ekern’s (1980) increases in nth-degree

risk (` = n−1) and Denuit and Eeckhoudt’s (2013) nth-degree mean-preserving stochastic

dominance (` = 1).5

3 Increases in Income Risk

Central to comparing the precautionary saving motives of RU decision-makers is the RU

precautionary premium θy2 . Using the first-order conditions (3) and (5), we define this

premium, equivalently, as the solution to6

u′(CE(ỹ2,l + sR− θy2u ))CE ′(ỹ2,l + sR− θy2u ) = u′(CE(ỹ2,h + sR))CE ′(ỹ2,h + sR) (9a)

φ′u(Eψ(ỹ2,l + sR− θy2u ))Eψ′(ỹ2,l + sR− θy2u ) = φ′u(Eψ(ỹ2,h + sR))Eψ′(ỹ2,h + sR) (9b)

θy2u is the safe reduction in ỹ2,l that has the same impact on saving as increasing income risk

from ỹ2,l to ỹ2,h. Our prior assumptions ensure that the left-hand sides depend positively

on θy2u , and so θy2u rises with the level of future marginal RU.

4By �?, we denote a stochastic-dominance relation, and ? ∈ {nSD,n-`-MPSD} specifies the order.
5To illustrate, mean-preserving spreads (Rothschild and Stiglitz 1970) are second-degree Ekern risk

increases and 2-1-MPSD shifts; increases in downside risk (Menezes et al. 1980) are third-degree Ekern risk
increases and 3-2-MPSD shifts; and increases in outer risk (Menezes and Wang 2005) are fourth-degree
Ekern risk increases and 4-3-MPSD shifts.

6The risk and precautionary premia derive for saving at its optimal level in the high-risk state.
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Within the CE channel, the relationship between CE and n-`-MSPD deteriorations of

ỹ2 is given by inserting the risk premium πy2ψ into the rewritten CE definition (2):

ψ(CE(ỹ2,h + sR)) = Eψ
(
ỹ2,l + sR− πy2ψ

)
= Eψ (ỹ2,h + sR) (10)

Liu’s Theorem 2 implies that the risk attitudes in (10) can equivalently be compared via

πy2ψ and (k/1)th-degree Ross more risk aversion for k = `+ 1, . . . , n.

Regarding the MEU channel, we know from Liu’s Theorem 3 that the contributions

to precautionary saving can equivalently be compared in terms of the von Neumann-

Morgenstern (vNM) precautionary premium θy2ψ from

Eψ′(ỹ2,l + sR− θy2ψ ) = Eψ′(ỹ2,h + sR) (11)

and ((k + 1)/2)th-degree Ross more risk aversion for k = `+ 1, . . . , n. The left-hand side

of (11) depends positively on θy2ψ due to risk aversion of ψ.

Inserting πy2ψ and θy2ψ into (9b) links the two channels to the total precautionary mo-

tive:7

φ′u(Eψ(ỹ2,l + sR− πy2ψ ))Eψ′(ỹ2,l + sR− θy2ψ ) = φ′u(Eψ(ỹ2,h + sR))Eψ′(ỹ2,h + sR) (12)

While θy2u always increases with θy2ψ , πy2ψ has an ambiguous effect: θy2u increases (decreases)

with πy2ψ if φu is concave (convex).

Interpersonal comparisons of precautionary saving motives in the face of large risks

generally require to evaluate the two decision-makers’ utilities initially at the same ar-

gument (KW, Liu).8 That is, the two must be subject to the same incentives, and the

low-risk state must be such that both choose identical saving amounts. As implied by the

first-order conditions (3) and (5), the latter requirement can be more or less restrictive.

For example, if both share the same discount factor, then, their utilities need to coincide

7KW derive a similar relation in their context referring to compensating premia. We focus instead on
equivalent premia.

8Only trivial cases escape from this rule, such as comparisons with a risk-neutral decision-maker.
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at the low-risk equilibrium to yield identical saving amounts at this point. If their dis-

count factors differ, then, their utility functions must still be such that the same saving

amounts are chosen at that point. In the following, we assume that this requirement is

fulfilled for any two decision-makers who are compared.9

The characterization of comparative precautionary saving for two RU decision-makers

who save the same amount under ỹ2,l follows from (12). Observing θy2ψu ≥ θy2ψv provides an

unambiguous signal: ψu has the stronger precautionary motive from the MEU channel.

For the CE channel, the comparisons hinge on the curvatures of φu and φv. If one of

them is concave and the other convex, the concave one unambiguously has the stronger

precautionary motive. However, if both are concave, φu is associated with the stronger

precautionary motive, if φu is more concave than φv and πy2ψu ≥ πy2ψv . If both are convex,

the reverse relations must hold.

Theorem 1 states the sufficient conditions for observing θy2u ≥ θy2v in the latter three

cases that admit such conditions.10 Because preferences operate in the two risk-impact

channels in fundamentally different ways, these conditions are merely sufficient.

Theorem 1 (Comparative Precautionary Saving under RU for Income Risk)

Consider two RU decision-makers u, v with identical optimal saving amounts under the ref-

erence income ỹ2,l, and θy2u , θ
y2
v from (9). Then, θy2u ≥ θy2v for all ỹ2,h with ỹ2,h �n−`−MPSD

ỹ2,l, if the conditions of Liu’s Theorem 3 hold so that θy2ψu ≥ θy2ψv and, alternatively,

(1.i) φ′′u ≤ 0 ≤ φ′′v.

(1.ii) if φ′′u ≤ φ′′v ≤ 0, the conditions of Liu’s Theorem 2 hold so that πy2ψu ≥ πy2ψv .

(1.iii) if 0 ≤ φ′′u ≤ φ′′v, the conditions of Liu’s Theorem 2 hold so that πy2ψu ≤ πy2ψv .

Theorem 1 combines the preference conditions for the MEU channel, known from Liu’s

Theorem 3, with additional ones for the CE channel. For example, for a mean-preserving

9Assessing the practical implications of this requirement is important for applications, but beyond the
scope of the present paper.

10In the other cases, the difference between θy2u and θy2v arising from the CE channel is either ambiguous
at the given level of generality (φ′′u ≤ φ′′v ≤ 0 or 0 ≤ φ′′v ≤ φ′′u combined with πy2ψu

≤ πy2ψv
; 0 ≤ φ′′u ≤ φ′′v

or φ′′v ≤ φ′′u ≤ 0 combined with πy2ψu
≥ πy2ψv

), or there is a stronger positive influence on θy2v than on θy2u
(φ′′v ≤ φ′′u ≤ 0 combined with πy2ψu

≤ πy2ψv
; 0 ≤ φ′′v ≤ φ′′u combined with πy2ψu

≥ πy2ψv
; φ′′v ≤ 0 ≤ φ′′u).
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spread of ỹ2, the fact that ψu is (3/2)th-degree Ross more risk-averse than ψv is equivalent

to decision-maker u having the stronger precautionary motive from the MEU channel.

To ensure u’s stronger total precautionary response, in addition, either of three sets of

conditions must hold for the CE channel. In (1.i), the precautionary-saving contribution

from the CE channel is positive for u, but negative for v. In (1.ii), both decision-makers’

contributions are positive but for the same CE decrease u’s is larger. Then, u has the

stronger total response if ψu is (2/1)th-degree Ross more risk-averse than ψv. In (1.iii),

both contributions are negative but for the same CE decrease u’s is smaller. In this case,

ψv being (2/1)th-degree Ross more risk-averse than ψu ensures u’s stronger total response.

The last scenario reflects a situation in which ψv is more risk-averse than ψu, and v has

a substantially higher EIS than u. In this setting, the “more risk-averse” decision-maker

actually exhibits a smaller precautionary response. This departure from EU intuition is a

consequence of the interacting risk and intertemporal preferences within the CE channel.

4 Increases in Return Risk

To examine the effects of deteriorations in return risk on CE, Bostian and Heinzel apply

Eeckhoudt and Schlesinger’s (2009) multiplicative risk premium πRψ , defined by

ψ(CE(y2 + sR̃h)) = Eψ(y2 + s(R̃l − πRψ )) = Eψ(y2 + sR̃h) (13)

πRψ measures the proportion of saving such that the product sπRψ is equal to the maximum

amount of future consumption the decision-maker is willing to forgo to avoid the risk

increase. Like πy2ψ , πRψ is positive under risk aversion, and rises under risk increases in the

n-`-MPSD order if and only if sgn
[
ψ(k)(.)

]
= (−1)k+1 for all k = `+ 1, . . . , n.

With a proof similar to that of Liu’s Theorem 2 (which we leave to the reader), risk

attitudes can be compared as follows.

Lemma 1 (Comparative Risk Aversion for Return Risk)

Suppose n ≥ 2 and 1 ≤ ` ≤ n−1, and consider two EU functions ψu, ψv with sgn
[
ψ

(k)
u (.)

]
=

sgn
[
ψ

(k)
v (.)

]
= (−1)k+1 for k = 1 and ` + 1, . . . , n, and identical optimal saving amounts
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under the reference return R̃l. Then, πRψu ≥ πRψv for all R̃h with R̃h �n−`−MPSD R̃l and

πRψ from (13) for ψ ∈ {ψu, ψv} if and only if ψu is (k/1)th-degree Ross more risk-averse

than ψv for all k = `+ 1, . . . , n.

We next extend the multiplicative premium concept to precautionary saving. For an

EU function ψ, the vNM precautionary premium θRψ derives from

E[ψ′(y2 + s(R̃l − θRψ ))R̃l] = E[ψ′(y2 + sR̃h)R̃h] (14)

θRψ is the proportion of saving such that the product sθRψ is the safe change in c̃R2 that

generates the same effect on saving as the deterioration from R̃l to R̃h.

The saving response to return risk contains a positive precautionary effect and a

negative substitution effect, and so it can be positive or negative. Importantly, the sign

of θRψ depends on the sign of the net saving response: θRψ is positive (negative) if and only

if total saving increases (falls). To see this, note that the marginal EU premium

E[ψ′(y2 + sR̃h)R̃h]− E[ψ′(y2 + sR̃l)R̃l]

is positive (negative) if and only if the precautionary (substitution) effect dominates.

Because future MEU decreases in s, saving s∗h under R̃h is higher (lower) than s∗l under

R̃l.
11 Future MEU on the left of (14) depends positively on θRψ , so that we have that

s∗h T s∗l ⇔ θRψ T 0

Moreover, θRψ increases in absolute terms with the strength of the saving reaction.

Eeckhoudt and Schlesinger (2008: Proposition 2) implies that for the EU function ψ

the precautionary dominates the substitution effect in response to a n-`-MPSD deterio-

ration of R̃, if the product of (−1)k and the kth derivative of hψ(R) ≡ Rψ′(y2 + sR),

h
(k)
ψ (R) = ψ(k+1)(y2 + sR)skR + ksk−1ψ(k)(y2 + sR) (15)

11The marginal EU premium is evaluated at s = s∗l (Eeckhoudt and Schlesinger 2009).
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is positive for all k = ` + 1, . . . , n. For sgn
[
ψ(j)(.)

]
= (−1)j+1 for j = k, k + 1, the first

term in this product expresses the precautionary effect and the second the substitution

effect (Bostian and Heinzel). For decreasing saving, we focus in the following on the case

where (−1)k h
(k)
ψ (R) is negative for all k = `+ 1, . . . , n.12

The statements of comparative precautionary saving under return risk differ from

Liu’s under income risk in two respects. First, the comparison in terms of Ross more risk

aversion involves here h
(k)
ψ (R) from (15), instead of ψ(k+1)(.). Second, two formulations

arise, depending on whether the two saving amounts both increase or decrease.13

Lemma 2 (Comparative Precautionary Saving under EU for Return Risk)

Suppose n ≥ 2 and 1 ≤ ` ≤ n− 1, and consider two increasing and concave EU functions

ψu, ψv with h
(k)
ψ (R) from (15) such that (−1)k h

(k)
ψ (R) ≥ [ ≤ ] 0 for all k = ` + 1, . . . , n

and ψ ∈ {ψu, ψv} and identical optimal saving amounts under the reference return R̃l.

If both saving amounts increase [ decrease ] in response to a return-risk increase in the

n-`-MPSD order, then (i)–(iii) are equivalent:

(i) ψu is Ross more risk-averse than ψv for k = `+ 1, . . . , n in the sense that

h
(k)
ψu

(Ra)

h
(k)
ψv

(Ra)
≥ λ ≥ ψ′′u(cRb )

ψ′′v (cRb )
for all cRa , c

R
b (16a)

(ii) There exist λ > 0 and η(cR) with η′(cR) such that

ψ′u(c
R) = λψ′v(c

R) + η′(cR) (16b)

where η′′(cR) ≥ 0 and (−1)k h
(k)
η (R) ≥ [ ≤ ] 0 for all cR and k = ` + 1, . . . , n, with

h
(k)
η (R) as in (15) for ψ = η.

(iii) θRψu ≥ θRψv ≥ 0
[
θRψu ≤ θRψv ≤ 0

]
for all R̃h with R̃h �n−`−MPSD R̃l and θRψ as defined

in (14) for ψ ∈ {ψu, ψv}.

We prove this lemma in Appendix A.

12For Ekern risk increases, (−1)n h
(n)
ψ (R) ≥ 0 is necessary and sufficient for saving to increase.

13Determining the larger precautionary premium is trivial if the saving responses have different signs.
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Condition (16a) has an interesting interpretation, when rewritten as14

(−1)k+1

[
ψ

(k+1)
u (cRa )

ψ′′u(cRb )
− ψ

(k+1)
v (cRa )

ψ′′v (cRb )

]
sR ≥ [ ≤ ] (−1)k k

[
ψ

(k)
u (cRa )

ψ′′u(cRb )
− ψ

(k)
v (cRa )

ψ′′v (cRb )

]
(17)

If both decision-makers increase (decrease) saving, the difference of ψu’s and ψv’s precau-

tionary effects is larger (smaller) than that of their substitution effects. In the context of

Lemma 2, this is equivalent to ψu having the stronger positive (negative) precautionary

response. Importantly, as applied to RU, Lemma 2 helps to compare the contributions to

precautionary saving from the MEU channel.

We define the RU precautionary premium θR, equivalently, as the solution to

u′(CE(y2 + s(R̃l − θRu )))CE ′(y2 + s(R̃l − θRu )) = u′(CE(y2 + sR̃h))CE
′(y2 + sR̃h)

(18a)

φ′u(Eψ(y2 + s(R̃l − θRu )))E[ψ′(y2 + s(R̃l − θRu ))R̃l] = φ′u(Eψ(y2 + sR̃h))E[ψ′(y2 + sR̃h)R̃h]

(18b)

The interpretation and analysis of θRu and θRψ are analogous. Like θRψ , the sign of θRu always

mirrors the direction of the net saving response.

Inserting πRψ and θRψ into (18b) links the preferences driving each risk-impact channel

to the precautionary saving motive:

φ′u(Eψ(y2 + s(R̃l − πRψ )))E[ψ′(y2 + s(R̃l − θRψ ))R̃l] = φ′u(Eψ(y2 + sR̃h))E[ψ′(y2 + sR̃h)R̃h]

(19)

As under income risk, θRu rises with θRψ , but the effect of πRψ is ambiguous: θRu increases

(decreases) with πRψ if φu is concave (convex).

Theorem 2 states the sufficient conditions for observing θRψu ≥ θRψv ≥ 0 or θRψu ≤ θRψv ≤ 0

for the cases that admit such conditions.15

Theorem 2 (Comparative Precautionary Saving under RU for Return Risk)

14See Lemma 4 for the equivalence of (16a) and (17).
15For all combinations of curvature constellations between φu and φv and πRψu

≥ πRψv
or πRψu

≤ πRψv
not

mentioned in Theorem 2, the order of the relative contributions to the total precautionary motives from
the CE channel is either ambiguous or it is opposite to the one from the MEU channel.

13



Consider two RU decision-makers u, v with identical optimal saving amounts under the

reference return R̃l, and θRu , θ
R
v from (18). Then, θRu ≥ θRv ≥ 0

[
θRu ≤ θRv ≤ 0

]
for all

R̃h with R̃h �n−`−MPSD R̃l, if the conditions of Lemma 2 hold so that θRψu ≥ θRψv ≥ 0[
θRψu ≤ θRψv ≤ 0

]
and, alternatively,

(2.i) φ′′u ≤ 0 ≤ φ′′v [ φ′′v ≤ 0 ≤ φ′′u ].

(2.ii) if φ′′u ≤ φ′′v ≤ 0 [ 0 ≤ φ′′v ≤ φ′′u ], the conditions of Lemma 1 hold so that πRψu ≥ πRψv .

(2.iii) if 0 ≤ φ′′u ≤ φ′′v [ φ′′v ≤ φ′′u ≤ 0 ], the conditions of Lemma 1 hold so that πRψu ≤ πRψv .

To illustrate the theorem, consider a mean-preserving spread of R̃ that makes both

decision-makers save less. Under Theorem 2, the preference conditions for the MEU

channel come from Lemma 2. In (2.i), the fact that ψu is Ross more risk-averse than ψv

in the sense that
h′′ψu (Ra)

h′′ψv (Ra)
≥ λ ≥ ψ′′

u(c
R
b )

ψ′′
v (c

R
b )

is equivalent to decision-maker u having the stronger

negative precautionary saving reaction. The additional conditions for the CE channel in

(2.ii) and (2.iii) rely on Lemma 1. In (2.ii), the precautionary-saving contributions from

the CE channel are negative for u and v but for the same CE decrease u’s is larger. Then,

u has the stronger total response if ψu is also (2/1)th-degree Ross more risk-averse than

ψv. In (2.iii), the contributions from the CE channel are positive for both but for the

same CE decrease u’s is smaller. In this case, u has the stronger total response if, in

addition, ψv is (2/1)th-degree Ross more risk-averse than ψu.

As compared to income risk, the example illustrates that the same type of risk increase

(mean-preserving spread) on a different type of risk (R̃ instead of ỹ2) activates different

preferences only in the MEU channel. The CE channels are supported by the same

kind of preferences. The RU precautionary premia from (9) and (18) help to measure

the associated precautionary saving motives conveniently in single quantities. But their

conceptual difference makes the two premia incomparable: the first takes consumption

units, while the second has a percentage scale. Also, these premia do not detail the

intensities of the different preferences sustaining a precautionary choice. We turn next to

alternative characterizations of the involved preferences using preference coefficients.

14



5 Representation by Preference Coefficients

To link Ross more risk aversion to preference coefficients, Liu and Meyer (2013a) develop

a measure similar to the Arrow-Pratt coefficient of absolute risk aversion

Af (x) ≡ −f
′′(x)

f ′(x)

The only difference is that Liu and Meyer’s measure evaluates f ′ at a fixed value x0 within

a bounded interval [a, b]. Assuming the monotonicity of f ′ and negativity of f ′′ over this

interval, they show that the concavity measure

Cf (x; a) ≡ −f
′′(x)

f ′(a)

equivalently represents Ross more risk aversion.16

To extend this measure to higher-order preferences, we apply Liu and Meyer’s (2013b)

measure of local (n/m)th-degree absolute risk aversion, defined for an n-times differen-

tiable function f with a positive (negative) mth derivative for m odd (even),

A(n/m)f (x) =
(−1)n−1f (n)(x)

(−1)m−1f (m)(x)

Definition 3 (Generalized Concavity Measure) For an n-times differentiable func-

tion f(x) with sgn
[
f (m)(x)

]
= (−1)m+1 and n > m ≥ 1 defined on [a, b] ⊆ R+

0 , the

generalized concavity measure of (n/m)th-degree risk aversion is

C(n/m)f (x; a) = (−1)n−m
f (n)(x)

f (m)(a)
(20)

We first amend (n/m)th-degree Ross more risk aversion as in Definition 1 by a repre-

sentation with preference coefficients.

16The sufficiency part of this equivalence follows because the condition for Ross more risk aversion,
u′′(xa)
v′′(xa)

≥ λ ≥ u′(xb)
v′(xb)

for all xa, xb ∈ [a, b], implies for xb = a that Cu(x; a) ≥ Cv(x; a) for all xa ∈ [a, b].

Necessity follows by integrating the latter inequality on both sides from a to xb, yielding u′(xb)
u′(a) ≤

v′(xb)
v′(a)

for all xb ∈ [a, b]. These two inequalities, combined with λ = u′(a)
v′(a) , establish the equivalence.

15



Lemma 3 (Comparative (n/m)th-Degree Risk Aversion using Coefficients)

Let ψu be more ((m+ 1)/m)th-degree risk-averse than ψv, i.e., −ψ
(m+1)
u (x)

ψ
(m)
u (x)

≥ −ψ
(m+1)
v (x)

ψ
(m)
v (x)

for

all x ∈ [a, b]. Then, condition (8) is equivalent to

C(n/m)ψu
(x; a) ≥ C(n/m)ψv

(x; a) for all x ∈ [a, b] (21)

with C(n/m)f as in (20) for f ∈ {ψu, ψv}.

We prove this lemma in Appendix B.

For m = 1, Lemma 3 provides a complementary characterization of nth-degree Ross

more risk aversion (Li 2009, Denuit and Eeckhoudt 2010a) using generalized concavity

measures of (n/1)th-degree risk aversion. Additionally, when applied for k = `+ 1, . . . , n,

it gives representations of Liu’s Theorem 2 and our Lemma 1 involving C(k/1) coefficients.

For m = 2, the lemma provides the conditions to compare the strengths of EU precau-

tionary saving motives under income risk (Liu: Theorem 3) with C((k+1)/2) coefficients.

Because higher-order risk changes entail positive variance by definition, ψu must also be

globally more Arrow-Pratt risk-averse (Kimball-prudent) than ψv for m = 1 (m = 2).

Thanks to Lemma 3, we can thus compare the risk preferences active in the CE

channels and, for income risk, the MEU channel using coefficients. Lemma 4 considers

the MEU channel under return risk.

Lemma 4 (Coefficient Representation of Lemma 2)

Let ψu be more Kimball-prudent than ψv, i.e., −ψ′′′
u (cR)
ψ′′
u(c

R)
≥ −ψ′′′

v (cR)
ψ′′
v (c

R)
for all cR ∈ [a, b], and

both decision-makers increase [ decrease ] saving in response to a return-risk increase in

the n-`-MPSD order. Then, condition (16a) for cRa , c
R
b ∈ [a, b] is equivalent to

[
C((k+1)/2)ψu

(cR; a)− C((k+1)/2)ψv
(cR; a)

]
sR ≥ [ ≤ ] k

[
C(k/2)ψu

(cR; a)− C(k/2)ψv
(cR; a)

]
(22)

for all cR ∈ [a, b] and k = ` + 1, . . . , n, with C(j/2)f for j ∈ {k, k + 1} as in (20) and

C(2/2)f (c
R; a) ≡ f ′′(cR)

f ′′(a)
, for f ∈ {ψu, ψv}.

The proof of Lemma 4 is similar to that of Lemma 3. Crucial to recognize is that
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h
(k)
ψu

(R)

h
(k)
ψv

(R)
≥ ψ′′

u(a)
ψ′′
v (a)

(as implied by (16a)) is, with h
(k)
ψ (R) from (15) for ψ ∈ {ψu, ψv}, equiv-

alent to a version of (17) with (cRa , c
R
b ) = (cR, a). With this substitution, the C((k+1)/2)

coefficients from (20) control the precautionary effects and the C(k/2) coefficients control

the substitution effects in this inequality. Inserting these coefficients yields (22). Inter-

estingly, while the precautionary effects depend on the same coefficients as under income

risk, the coefficients controlling the substitution effects differ from those the CE channels

involve (C(k/2) instead of C(k/1)).

Theorem 3 summarizes the results for RU. Along with the curvature condition (6) for

φ, it provides the conditions to predict from preference coefficients when one RU decision-

maker has a stronger precautionary saving motive than another. Its statements detail the

ways in which the different preferences are involved in precautionary saving.

Theorem 3 (Comparative Precautionary Saving under RU using Coefficients)

For two RU decision-makers u, v, let ψu be more prudent than ψv, i.e., −ψ′′′
u (c)
ψ′′
u(c)
≥ −ψ′′′

v (c)
ψ′′
v (c)

for all c ∈ [a, b]. Then, for Theorem 1, with c = cy2, θy2u ≥ θy2v follows in (1.i) also if

C((k+1)/2)ψu
(cy2 ; a) ≥ C((k+1)/2)ψv

(cy2 ; a) for all cy2 ∈ [a, b]

For Theorem 2, with c = cR, θRu ≥ θRv ≥ 0
[
θRu ≤ θRv ≤ 0

]
follows in (2.i) also if

[
C((k+1)/2)ψu

(cR; a)− C((k+1)/2)ψv
(cR; a)

]
sR ≥ [ ≤ ] k

[
C(k/2)ψu

(cR; a)− C(k/2)ψv
(cR; a)

]
for all cR ∈ [a, b] and k = `+ 1, . . . , n, with C(j/2)f for j ∈ {k, k + 1} as in Lemma 4.

(1.ii) and (2.ii) additionally require that ψu be more Arrow-Pratt risk-averse than

ψv, i.e., −ψ′′
u(c)
ψ′
u(c)
≥ −ψ′′

v (c)
ψ′
v(c)

, and C(k/1)ψu
(c; a) ≥ C(k/1)ψv

(c; a) for all c ∈ [a, b] and k =

`+ 1, . . . , n.

(1.iii) and (2.iii) additionally require the reverse relations regarding the risk aversion

of ψu and ψv as compared to (1.ii) and (2.ii), respectively.

Theorem 3 illustrates the increased complexity of comparing precautionary saving mo-

tives under RU. Thus, for income risk under EU it is enough to inspect ((k+1)/2)th-degree
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risk aversion (Lemma 3). For example, an increase in downside risk on ỹ2 (a 3-2-MPSD

shift) makes ψu exhibit a stronger precautionary motive than ψv if ψu is globally more pru-

dent than ψv and their generalized concavity measures of temperance C(4/2)ψ compare as

ψ′′′′
u (cy2 )
ψ′′
u(a)

≥ ψ′′′′
v (cy2 )
ψ′′
v (a)

. Comparing two RU decision-makers entails, in addition to this same

set of criteria for the MEU channel, requirements specific to the CE channel. Only if

second-order risk and intertemporal preferences are globally such that ARISu > ARAψu

and ARISv < ARAψv , so that φ′′u ≤ 0 ≤ φ′′v, the conditions for the MEU channel are

enough to determine whether θy2u ≥ θy2v . If both functions exhibit ARIS greater (less)

than ARAψ, and these coefficients entail φ′′u ≤ φ′′v ≤ 0 (0 ≤ φ′′u ≤ φ′′v), we must addition-

ally compare their Arrow-Pratt risk aversion and their generalized concavity measures of

downside risk aversion C(3/1)ψ(cy2 ; a) = ψ′′′(cy2 )
ψ′(a)

. Similar comparisons for an increase in

downside risk on R̃ involve, in addition, in (22) the C(3/2)ψ coefficients.

Like Theorems 1 and 2, Theorem 3 provides no representation when the CE channel

renders ambiguous or counter-directional effects.17 These inconclusive assessments occur

at a rather high level of theoretical generality. Exploring their relevance in real settings,

which could uncover additional regularities in these cases, is a future task.

Lemmas 3 and 4 and Theorem 3 show the flexible applicability of generalized concavity

measures for different kinds of preference comparisons, in static and dynamic contexts,

for additive and multiplicative risks, and under EU and RU. Unlike the premia, these

coefficients span income risk and return risk. Coefficients are widely used in applications.

This approach may thus provide a lower bar for assessing precautionary motives.

6 Relation to Existing Literature

Our investigation merges three streams of literature. In the first, Eeckhoudt and Schlesinger

(2008) derive the conditions on utility functions for risk-induced higher saving. Building

on their results, Liu generalizes Kimball’s precautionary-premium analysis to higher-order

income risks. These studies focus on EU and do not consider preference coefficients.

17For higher-order risks, Theorem 3 technically has stronger conditions than Theorems 1 and 2 because
of the required additional comparison of preferences towards second-order risk.
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In another stream, Kimball and Weil (2009) extend Kimball’s work on precautionary

saving to RU. Their decision framework, which we adopt here, is rooted in Kreps and

Porteus (1978) and Selden (1978), and was popularized by Epstein and Zin (1989, 1991)

and Weil (1990). RU has become a standard modeling approach in settings where risk

aversion and intertemporal substitution matter simultaneously. Few studies under RU

address precaution. To our knowledge, KW is the only constructive contribution to the

measurement and comparison of precautionary saving motives under RU.

The final stream discusses the proper assessment of risk preferences depending on

the risk environment. Both KW and Kimball formulate their precautionary premia and

prudence coefficients only for additive risks on nonrandom future income, akin to the scope

of the Arrow-Pratt measures of risk aversion. Unfortunately, these measures are not well

suited for even slightly more complicated settings, including changes in risk (Kihlstrom

et al. 1981, Ross 1981), multiplicative risk (Capéraà and Eeckhoudt 1975, Briys et al.

1989), and higher-order risk (Chiu 2005, Denuit and Eeckhoudt 2010b).

Under return risk, Drèze and Modigliani (1972) for EU and Langlais (1995) for RU

suggest premium measures that suffer from issues similar to the ones raised against the

application of the Arrow-Pratt premium with multiplicative risk. (Arrow-Pratt premia

need not be positive under risk aversion, nor increase with a mean-preserving spread,

in this case.) Briys et al.’s additive premium avoids these problems by accounting for

the optimal choices in the low- and high-risk states. Eeckhoudt and Schlesinger’s (2009)

multiplicative premium concept, which we adopt, provides a more convenient solution.

Ross’s stronger conditions admit comparisons of risk aversion for increases in additive

risk. Higher-order extensions of this approach (e.g., Liu and Meyer 2013b) can be applied

to multiplicative risks using multiplicative premia, as we show. Thanks to the central role

of risk preferences under RU, the latter extensions of Ross’s approach under EU help to

formulate the conditions for comparative precautionary saving under RU.
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7 Conclusion

We extend the analysis of comparative precautionary saving to higher-order risk effects

under RU and return risk, covering (to the possible extent) the broad set of risks in Eeck-

houdt and Schlesinger (2008). Under RU, these comparative statements always involve

risk and intertemporal preferences, spawning additional behavioral tradeoffs compared

to EU. For return risk, we define a multiplicative precautionary premium starting from

Eeckhoudt and Schlesinger (2009). But its sign ambivalence and conceptual difference

with the precautionary premium under income risk may impair the merit of such premia

in applications. Our alternative representation with preference coefficients gauges more

finely the preferences activated under income risk and return risk. We hope that our

results can help to better understand saving behavior in various risky environments.
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Appendix

A Proof of Lemma 2

Consider first the case where both saving amounts increase in response to a given return-

risk increase, so that θRψu , θ
R
ψv
≥ 0.

(i) ⇒ (ii) is analogous to Liu (2014).

(ii) ⇒ (iii). With (14) for ψ ∈ {ψu, ψv} and the concavity of ψu,

θRψu ≥ θRψv ⇔ E[ψ′u(y2 + s(R̃l − θRψu))R̃l] ≥ E[ψ′u(y2 + s(R̃l − θRψv))R̃l] (23)

Given η(cR) with η′(cR) such that (16b) holds, η′′(cR) ≥ 0, and (−1)kh
(k)
η (R) ≥ 0 for all

cR and k = `+ 1, . . . , n, (23) holds because

E[ψ′u(y2 + s(R̃l − θRψu))R̃l] = E[ψ′u(y2 + sR̃h)R̃h]

= λE[ψ′v(y2 + sR̃h)R̃h] + E[η′(y2 + sR̃h)R̃h]

≥ λE[ψ′v(y2 + sR̃h)R̃h] + E[η′(y2 + sR̃l)R̃l]

= λE[ψ′v(y2 + s(R̃l − θRψv))R̃l] + E[η′(y2 + sR̃l)R̃l]

≥ λE[ψ′v(y2 + s(R̃l − θRψv))R̃l] + E[η′(y2 + s(R̃l − θRψv))R̃l]

= E[ψ′u(y2 + s(R̃l − θRψv))R̃l],

The first line is (14) for ψ = ψu; the second line applies (16b); the first inequality follows

from the NSD equivalence in Eeckhoudt and Schlesinger (2008) for f = η′ applied to

the case of return-risk increases in the n-`-MPSD order; the fourth line applies (14) for

ψ = ψv; the second inequality follows from η′′(cR) ≥ 0 and θRψv ≥ 0; and the last line

applies (16b) again.

(iii) ⇒ (i). θRψu ≥ θRψv ≥ 0 for all R̃h such that R̃h �n−`−MPSD R̃l and θRψ defined as

in (14) for ψ ∈ {ψu, ψv} implies that θRψu ≥ θRψv ≥ 0 for all R̃h such that R̃h is a kth-

degree Ekern (1980) risk increase over R̃l for all k = `+ 1, . . . , n. Based on an argument

analogous to Denuit and Eeckhoudt (2010a), this implies that ψu is Ross more risk averse
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than ψv in the sense of (16a) for all k = `+ 1, . . . , n.

When both saving amounts instead decrease, so that θRψu , θ
R
ψv
≤ 0, (i) ⇒ (ii) follows

as before, only that (−1)kh
(k)
ψ (R) ≤ 0 for ψ ∈ {ψu, ψv} so that (−1)k h

(k)
η (R) ≤ 0, for

k = ` + 1, . . . , n. In (ii) ⇒ (iii), only the directions of the two inequalities are reversed,

because of (−1)k h
(k)
η (R) ≤ 0 and θRψv ≤ 0, respectively. For (iii) ⇒ (i), the proof starting

from θRψu ≤ θRψv ≤ 0 is analogous. �

B Proof of Lemma 3

Sufficiency. Given (8), there exists for all m < n and all xa, xb ∈ [a, b] a λ > 0 such that

ψ
(n)
u (xa)

ψ
(n)
v (xa)

≥ λ ≥ ψ
(m)
u (xb)

ψ
(m)
v (xb)

. (24)

Let xb = a. Then, for all x ∈ [a, b],

ψ
(n)
u (x)

ψ
(n)
v (x)

≥ ψ
(m)
u (a)

ψ
(m)
v (a)

⇔ (−1)n−m
ψ

(n)
u (x)

ψ
(m)
u (a)

≥ (−1)n−m
ψ

(n)
v (x)

ψ
(m)
v (a)

.

Necessity. Given (20), so that, for x = xa,

(−1)n−m
ψ

(n)
u (xa)

ψ
(m)
u (a)

≥ (−1)n−m
ψ

(n)
v (xa)

ψ
(m)
v (a)

⇔ ψ
(n)
u (xa)

ψ
(n)
v (xa)

≥ ψ
(m)
u (a)

ψ
(m)
v (a)

.

The first inequality in (24) arises by setting λ ≡ ψ
(m)
u (a)

ψ
(m)
v (a)

. The second holds because ψ
(m)
u (a)

ψ
(m)
v (a)

decreases with its argument if, for all x ∈ [a, b], −ψ
(m+1)
u (x)

ψ
(m)
u (x)

≥ −ψ
(m+1)
v (x)

ψ
(m)
v (x)

. �
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