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1 Introduction

How to accomplish the transition to a low-carbon energy industry in a socially optimal

way is the subject of an ongoing debate. Typically, investments in the energy sector

concern long-lived and cost-intensive capital goods associated, moreover, with partic-

ularly long construction times. At the same time, due to their environmental impact,

such investments have long-term consequences for society as a whole. Another distinctive

feature of the energy sector is its recent liberalization in most industrialized countries.

Investment decisions are now mainly governed by private actors. As a consequence, not

only environmental preferences, but also time preferences, both on social and on private

levels, are likely to play a key role in the transition to a low-emission energy industry.

We investigate the transition from an established to a new energy technology in a styl-

ized general equilibrium framework, which incorporates the distinctive features of the

energy sector as outlined above. The established technology gives rise to an environmen-

tally harmful pollutant, which can partly be disarmed by abatement effort. The new

technology is clean, but its specific capital needs a positive time span to be built. That

is, there is a time lag between the cost of investment and the new capital to become

productive. We assume that in the status quo the established production technique is

fully developed, while the new technology is only to be produced and, thus, may eventu-

ally replace the established one. In addition, we account for the recent liberalization of

energy markets by assuming that investments in capital are governed by private actors

who exhibit a private time preference rate which exceeds the social rate. We show that

these two characteristics, the time-to-build feature and the split in time preference rates,

create, in a mutually reinforcing way, less favorable circumstances for the introduction

of the new and the replacement of the old energy technology compared to the social

optimum, even if the welfare losses from emissions are fully internalized. We show how

the social optimum can be achieved in a decentralized market economy by a combination
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of environmental and technology policies.

As an outcome of the discounting debate, it is well recognized in economics and fi-

nance that, in general, social and private time-preference rates differ for several reasons

(e.g., Arrow and Lind 1970, Blanchard 1985, Drèze and Stern 1990, Frederick et al.

2002, Groom et al. 2005, Mehra and Prescott 2003, Portney and Weyant 1999, Stiglitz

1982, Tirole 1981, Yaari 1965). Traditional categories include distortionary taxation,

distortionary public policies, imperfect competition and production externalities, the

regulation of which is generally clear, at least in theory. More recent contributions stress

agency issues, for example in form of the ‘short-termism’ to which managers are urged

by their contracts (e.g., DeMarzo et al. 2009). Moreover, the de-facto unavailability of

private bonds with arbitrary maturities may be welfare-deteriorating when bond yield

curves decline for long maturities (Gollier 2002, 2010). In view of the ongoing discussion

with respect to the causes of split time preferences, we omit an endogenous explanation

of the time-preference distortion. For analytical tractability, we stick to the most simple

case of a world where outcomes are certain and preferences are separable in time and in

consumption of a final good and emissions. This allows us to analyze the welfare impli-

cations of split time-preference rates for time-lagged technological transitions in general

and to treat policy implications of those cases, where the market failure underlying the

distortion cannot otherwise be remedied.

Our paper complements the wide-spanned literature on induced technological change and

the environment. In this literature, the intertemporal nature of the climate change prob-

lem is mostly addressed either in endogenous growth or integrated assessment models.

Top-down approaches study induced technological change by applying one representative

aggregated production technology, which becomes more efficient and/or less polluting

by technological change (e.g., Bovenberg and Smulders 1995, Goulder and Mathai 2000,

Nordhaus 2002, Newell et al. 1999, Tahvonen and Salo 2001). In bottom-up approaches,
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induced technological change also allows for structural change between competing tech-

nologies (e.g., Gerlagh and Van der Zwaan 2003, Goulder and Schneider 1999, Van der

Zwaan et al. 2002). The two kinds of approaches commonly model technological change

endogenously as a gradual improvement resulting either from R&D investments or learn-

ing by doing. They focus on positive spillovers to other firms from the innovation process

or dynamic increasing returns stemming from learning by using, learning by doing or

network externalities typically related to the diffusion of new technologies as sources of

market failure inducing technology policy (Jaffe et al. 2005). In contrast to this literature,

we abstract from these components of long-run technological change in particular, and

growth in general. Instead we emphasize the welfare-theoretic consequences of the split

of social and private time preference rates and the time-to-build feature in a framework

of structural change. As in Winkler (2008), we rather adopt a medium-term perspective,

in which the set of available technologies is given, and the system dynamics is governed

by the accumulation of the corresponding specific capital stocks.1

Although derived from a stylized theoretical model, our results have direct policy impli-

cations for the energy sector in particular, and technological transitions in general. With

respect to the former, we expect the energy sector, due to its long constructions times

and the implied reinforcing effect, to be particularly vulnerable for inefficiencies caused

by split time-preference rates. In addition, our results give new theoretical support for

subsidizing new less polluting energy technologies. From a more general perspective, we

provide a new reason why environmental regulation should be complemented by tech-

nology policy.

The paper is organized as follows. The model is introduced in Section 2. In Sections 3

and 4, we solve the intertemporal optimization problems in the social optimum and in

the decentralized competitive market economy, and derive conditions for partial and full
1 Formally, our paper builds on the structural change frameworks of Winkler (2005) and Winkler et al.
(2005), and is more loosely related to recent growth models with time-lagged stock accumulation (e.g.,
Bambi 2008, Boucekkine et al. 2005, Fabbri and Gozzi 2008).
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replacement of the established by the new energy technology. In Section 5, we discuss

model assumptions and policy implications. Section 6 concludes.

2 The model

Consider an economy composed of two vertically integrated sectors, the energy sector and

the investment sector. Labor constitutes the only primary input. It is by assumption fixed

to unity at all times t. The energy sector comprises two technologies, an established and

a new one. The established technology is fully set up at the beginning of the planning

horizon. As a consequence, we do not explicitly consider capital for the established

technology. We include the costs of employing and maintaining the capital stock into

the labor costs which are normalized to 1. The established technology generates one unit

of energy x for every unit of labor l1 employed. In addition, each unit of output produced

gives rise to one unit of an unwanted and harmful joint output j:

x1(t) = l1(t) = j(t) . (1)

Abatement effort a per unit of energy (partially) reduces the joint output. The function

G denotes the fraction of the joint output j which is disarmed by abatement. G is

assumed to be twice continuously differentiable, satisfying G(0) = 0, G′ > 0, G′′ < 0 and

lima→1G(a) = 1. We impose Inada conditions lima→0G
′(a) = ∞, lima→1G

′(a) = 0 to

ensure that the abatement effort a is strictly positive and finite along the optimal path as

long as l1 > 0. Then, net emissions e equal the amount of joint output j minus abatement:

e(t) = x1(t)
(
1−G(a(t))

)
. (2)
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The new technology employs λ units of labor together with one unit of the specific capital

good k to produce one unit of energy:

x2(t) = min
(
l2(t)
λ

, k(t)
)
. (3)

Without loss of generality, the new technology does not produce an unwanted joint

output. Energy is assumed to be homogeneous, such that total production x equals:

x(t) = x1(t) + x2(t) . (4)

The investment sector employs one unit of labor to produce one unit of the capital

good. We assume that the creation of new capital goods needs a positive time span σ.

That is, there is a time lag σ between the costs of investment i and the emergence of

productive capital k. The intuition behind this assumption is twofold. On the one hand,

power plants are not built in a day but need substantial time for creation.2 On the other

hand, the time lag σ can also be identified with the time required for the R&D of a new

technology. In addition, the capital stock k deteriorates at the constant and exogenously

given rate γ, implying the following equation of motion:

k̇(t) = i(t− σ)− γk(t) , γ > 0 . (5)

Due to the time lag σ the equation of motion for the capital stock (5) constitutes a

retarded differential-difference equation. Thus, variations of the capital stock k do not

only depend on parameters evaluated at time t but also on parameters evaluated at the

earlier time t− σ.

2 In general, the time span σ strongly depends on the type of technology. While a nuclear power plant
may take five to seven years to be built, a gas co-generation plant is set up in a year or two.
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The labor constraint implies that

1 ≥
[
1 + a(t)

]
l1(t) + l2(t) + i(t) , (6)

holds at all times t.3 Assuming efficient labor allocation among the three production

processes, i.e., 1 = [1 + a(t)]l1(t) + l2(t) + i(t) ∀t, and full employment of the capital

stock, i.e., x2(t) = l2(t)/λ = k(t), we obtain the following formulae for total energy x(t)

and net emissions e(t):

x(t) = 1− λk(t)− i(t)
1 + a(t) + k(t) , (7a)

e(t) =
[
1−G(a(t))

] 1− λk(t)− i(t)
1 + a(t) . (7b)

To close the model we consider a representative consumer who derives instantaneous

utility from consumption of the final product and disutility from net emissions.4 Like

Arrow and Kurz (1970: 116) we assume that the representative consumer’s private rate

of time preference differs from the social. That is, the representative consumer applies

different intertemporal weights between welfare today and welfare tomorrow compared

to a social planner maximizing social welfare. For simplicity, we consider instantaneous

welfare to be additively separable in energy consumption x and net emissions e. As a

consequence, the representative consumer (privately) maximizes

Wp =
∫ ∞

0

[
U(x(t))−D(e(t))

]
exp[−ρpt] dt , (8a)

3 Note that we have defined abatement effort a per unit of energy produced via the established energy
technology. Thus, total abatement effort equals a(t)x1(t) = a(t)l1(t).

4 Obviously, CO2 is a stock and not a flow pollutant. However, assuming that the negative externality
on utility is caused by the emissions and not the global stock simplifies further calculations without
impacting on our qualitative results (for further discussion, see Section 5).
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whereas, at the same time, the social planner maximizes

W =
∫ ∞

0

[
U(x(t))−D(e(t))

]
exp[−ρt] dt , (8b)

where U and D are twice differentiable functions with U ′ > 0, U ′′ < 0, limx→0 U
′ = ∞

and D′(0) ≥ 0, D′ > 0 for any positive amount of emissions e, and D′′ > 0. We

concentrate on the empirically relevant case that the private rate of time preference ρp

exceeds the socially efficient rate ρ, i.e., ρp > ρ. That is, individual actors are in a private

decision context more impatient to consume than society as a whole.

We want to emphasize that the split in time-preference rates does not imply that the rep-

resentative consumer and the social planner have preferences that differ in an arbitrary

way. On the contrary, we impose that both exhibit essentially the same preferences,

as expressed in the instantaneous utility function U(x(t)) − D(e(t)). However, we ac-

knowledge that certain circumstances may cause a split in the time-preference rates.

Apart from the causes already mentioned in Section 1, we want to give two further in-

tuitive examples. First, individuals only live for a finite time. As a consequence, they

ask for a higher interest rate than an infinitely lived individual, as they face the risk not

to survive the repayments. If, for example, individuals are risk-neutral, exhibit a pure

time preference rate ρ and face a Poisson-distributed death probability p, the resulting

effective rate of time-preference is ρ + p (Blanchard 1985, see also Yaari 1965). Iden-

tifying the representative consumer with the finitely lived private households and the

social planner with the state as an eternal entity leads to ρp > ρ.5 Second, a state as

a large investor may have the chance to better diversify and, therefore, better ensure

itself against risk than an individual private investor. Everything else equal, the private

investor would, thus, ask for a higher return on investment than the social planner. In

5 Calvo and Obstfeld (1988) show in a growth model with different generations of consumers with
uncertain finite lifetimes that the optimal long-run interest rate corresponds to the social planner’s
generational discount rate, but need not coincide with the individuals’ subjective utility discount rates.
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our stylized model this can be modelled by assuming a higher time-preference rate of

the representative consumer. However, due to the variety of different causes for a split

in the time-preference rate, we neither model finite lifetimes or risk diversification ex-

plicitly, but assume split time-preference rates as a stylized fact and rather focus on the

implications of this assumption.

3 Social optimum

We now derive the optimal plan for the development of the model economy. As outlined

in Section 2, social welfare is given by equation (8b). Thus, the social planner solves the

following maximization problem:

max
a(t),i(t)

∫ ∞
0

[
U(x(t))−D(e(t))

]
exp[−ρt] dt , (9a)

subject to equations (5), (7a), (7b), the inequality constraints

0 ≤ i(t) ≤ 1− λk(t) , (9b)

and the initial conditions

k(0) = 0 , i(t) = 0, t ∈ [−σ, 0) . (9c)

For the dynamics of the economy it is important that, due to the linearity of the pro-

duction techniques, two corner solutions can occur along the optimal path. It may be

optimal not to invest in the new technology, which corresponds to i(t) = 0. Or, it may be

optimal only to use the new technology, in which case all labor is utilized to employ and

maintain the capital stock, i.e., i(t) = 1− λk(t) and l1(t) = a(t) = 0. As a consequence,

we have to explicitly check for these two corner solutions to characterize the complete
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dynamics of the model economy.

3.1 Necessary and sufficient conditions for the social optimum

To solve the optimization problem of the social planner we apply the generalized max-

imum principle derived in El-Hodiri et al. (1972) for time-lagged optimal control prob-

lems. One obtains the following present-value Hamiltonian H:

H =
[
U(x(t))−D(e(t))

]
exp[−ρt] + qk(t+ σ)i(t)− qk(t)γk(t)

+ qx(t)
[1− λk(t)− i(t)

1 + a(t) + k(t)− x(t)
]

+ qi(t)i(t) (10)

+ qe(t)
[(

1−G(a(t))
)1− λk(t)− i(t)

1 + a(t) − e(t)
]

+ qi(t)
[
1− λk(t)− i(t)

]
,

where qk denotes the costate variable or shadow price of the capital stock k, and qx, qe,

qi and qi denote the Kuhn-Tucker parameters for the (in)equality conditions (7a), (7b)

and (9b). Assuming the Hamiltonian H to be continuously differentiable with respect

to the control variables a and i, the following necessary conditions hold for an optimal

solution:

qx(t) = U ′(x(t)) exp[−ρt] , (11a)

qe(t) = −D′(e(t)) exp[−ρt] , (11b)

0 = 1− λk(t)− i(t)
[1 + a(t)]2

{
qx(t) + qe(t)

[
1−G(a(t)) + (1 + a(t))G′(a(t))

]}
, (11c)

qk(t+ σ) + qi(t) = qx(t)
1 + a(t) + qe(t)

1−G(a(t))
1 + a(t) + qi(t) , (11d)

q̇k(t) = γqk(t)− qx(t)1 + a(t)− λ
1 + a(t) + λqe(t)

1−G(a(t))
1 + a(t) + λqi(t) , (11e)

qi(t) ≥ 0 , qi(t)i(t) = 0 , (11f)

qi(t) ≥ 0 , qi(t)
[
1− λk(t)− i(t)

]
= 0 . (11g)
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As the Hamiltonian is strictly concave along the optimal path (see Appendix A.1), the

optimal solution is unique and the necessary conditions (11a)–(11g) are also sufficient

if, in addition, the following transversality condition holds:

lim
t→∞

qk(t)k(t) = 0 . (11h)

Conditions (11a) and (11b) state that along the optimal path the shadow price of energy

equals the marginal utility of energy and the shadow price of net emissions equals the

marginal disutility of net emissions. By inserting conditions (11a) and (11b) in condition

(11c), we obtain for i(t) < 1− λk(t):

U ′(x(t)) = D′(e(t))
[
G′(a(t)) (1 + a(t)) + 1−G(a(t))

]
. (12)

This condition expresses that along the optimal path (and for i(t) < 1 − λk(t)) the

utility of an additional marginal unit of energy equals the disutility of the emissions that

it induces. Along the optimal path this equation determines the optimal value of the

abatement effort a per unit of output x1. If i(t) = 1− λk(t), implying that labor input

in the established production technology l1 and abatement effort a equal zero, condition

(11c) reduces to the truism 0 = 0.

Together with the transversality condition (11h), and inserting conditions (11a) and

(11b), condition (11e) can be unambiguously solved to yield:

qk(t) = exp[−ρt]
∫ ∞
t

U ′(x(t′))(1+a(t′)−λ) + λ
[
D′(e(t′))

(
1−G(a(t′))

)
− qi(t′)

]
1 + a(t′)

× exp[−(γ + ρ)(t′ − t)]dt′ .
(13)

Along the optimal path the shadow price for the capital stock equals the net present

value of all future welfare gains of one additional marginal unit of the capital good. As

capital goods are long-lived, they contribute over the whole time horizon (increasingly
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less though due to deterioration and discounting). The fraction under the integral equals

the marginal instantaneous welfare gain of an additional unit of capital, which comprises

two components. The first is the direct welfare gain due to the energy produced. It

is positive if the new technology needs less labor input per unit of output than the

established one, i.e., λ < 1 + a(t). The second term is always positive and denotes

the welfare gain due to emissions abated by switching from the established to the new

production technique.

Inserting conditions (11a) and (11b) in equation (11d) yields:

qk(t+ σ) + qi(t) = exp[−ρt]
1 + a(t)

[
U ′(x(t))−D′(e(t))

(
1−G(a(t))

)]
+ qi(t) . (14)

The equation states that along the optimal path, and as long as the inequality constraints

(9b) are not binding, the present value of the welfare loss by investing in one marginal

unit of new capital, which is given by the present value welfare gain of the alternative use

of one marginal unit of labor in the established production technique minus the resulting

disutility from emissions (right-hand side), equals the net present value of the sum of all

future welfare gains by using the new capital good in production (left-hand side). As the

investment needs the time span σ to become productive capital, the sum of all future

welfare gains of an investment at time t is given by the shadow price of capital at time

t+σ, qk(t+σ). If it is not optimal to invest, i.e., qi(t) ≥ 0, the future welfare gains of an

investment are weakly smaller than the costs of investment. Further, if all labor is used

to employ and maintain the capital stock, i.e., qi(t) ≥ 0, the future welfare gains of an

investment weakly exceed the costs of investment.

As noted above, the optimal system dynamics of the optimization problem (9) splits into

three qualitatively different regimes. These different regimes are determined by whether

and which of the two inequality constraints (9b) are binding:

1. No investment:
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The new technology may be so inferior compared to the established technology

that it is not used in the long run. In fact, if it is not optimal to invest in the new

technology in t = 0, then it is optimal to never invest in the new technology.6 In

this case, in which the inequality constraint i(t) ≥ 0 is binding at all times, the

economy does not exhibit any transitional dynamics but instantly switches to and

stays in the corner solution i(t) = 0, k(t) = 0, x1(t) = x0
1 > 0, a(t) = a0 > 0,

e(t) = e0 > 0 for all t.

2. Full replacement:

The new technology may be so superior compared to the established technology

that it eventually fully replaces the established one. That is, from some time t̄

onwards the economy enters a regime in which all labor is solely used to employ

and maintain the capital stock for the new technology. In this case, in which the

inequality constraint i(t) ≥ 1 − λk(t) is binding for all t ≥ t̄, the economy either

converges to a stationary state in which i(t) = i∞ > 0, k(t) = k∞ > 0, x1(t) =

a(t) = e(t) = 0 or converges to a limit cycle around this stationary state.

3. Partial replacement:

Finally, the new technology may be such that it is optimal to invest in the new

technology but the new technology is not superior enough compared to the es-

tablished technology to fully replace it. In this case it is not entirely clear what

the system dynamics looks like, as it is governed by a system of functional dif-

ferential equations. However, the system exhibits a unique stationary state with

i(t) = i? > 0, k(t) = k? > 0, x1(t) = x?1 > 0, a(t) = a? > 0 and e(t) = e? > 0.

Fortunately, the system dynamics of the third regime is irrelevant to our analysis.

In Appendix A.2 we further discuss the system dynamics of the first and second regime,

6 This holds because if no investment at t = 0 is optimal, no capital is accumulated. As a consequence,
the optimization problem at time t+ ∆t is identical to the optimization problem at time t = 0. As it
was not optimal to invest at t = 0 it is also not optimal to invest at time t+ ∆t.
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on which our results in the following are based.

3.2 Conditions for investment and replacement

Thus far, it is not clear which of the three possible regimes apply for a given economy.

We now derive conditions which classify all possible economies into the three different

regimes by their set of exogenous parameters . These conditions determine whether there

is any investment in the new technology, and if so, whether the established technology

is eventually fully replaced by the new one. We start with the no investment condition.

In order to derive a condition which identifies whether no investment is optimal, we

assume that it is optimal never to invest, i.e., the economy stays in the corner solution

i(t) = 0, ∀ t. The following proposition states the condition for which this corner solution

satisfies the necessary and sufficient condition for an optimal solution.

Proposition 1 (No investment condition in the social optimum)

Given optimization problem (9), there is no investment in the new technology, i.e., i(t) =

0 ∀ t if and only if

1 + a0 + 1−G(a0)
G′(a0) ≤ λ+ (γ + ρ) exp[ρσ] , (15)

where a0 is determined by the unique solution of the implicit equation:

U ′
(
1− a0) = D′

(
(1− a0)(1−G(a0))

)[
1−G(a0) + (1 + a0)G′(a0)

]
. (16)

The proof is given in Appendix A.3.

Condition (15) has an intuitive economic interpretation. The left-hand side corresponds

to the unit costs of production of the established technology, UC0
T1
, the right-hand side

to the unit costs of production of the new technology, UC0
T2
. Thus, condition (15) states
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that no investment in the new technology is optimal if its unit costs of production are

greater or equal to those of the established technology, i.e., UC0
T2
≥ UC0

T1
.

In the centralized economy, UC0
T1

comprises three components, the ‘pure’ labor costs

per unit of energy production, the labor costs for abatement per unit, and the social

costs of unit emissions in terms of labor. UC0
T2

comprises, apart from the ‘pure’ labor

costs, the costs for building up and maintaining the necessary capital good in terms of

labor. Obviously, the capital costs per unit of output depend positively on the dynamic

characteristics γ and σ of the capital good production, as well as on the time preference

rate ρ. In particular, the longer the time lag σ and the higher the rate of time preference

ρ the higher are the unit costs of production of the new technology.

Despite the infinite time horizon and the linearity of the two production techniques, a

violation of condition (15) does not guarantee full replacement of the established tech-

nology by the new technology in the long run. In the following, we deduce conditions for

which complete or partial replacement occur. Formally, full replacement of the estab-

lished by the new production technique implies that the economy is in the i(t) = 1−λk(t)

corner solution in the long run. The inference of a condition for full replacement is sim-

ilar to that of Proposition 1. We investigate under which conditions a full replacement

stationary state, in which all labor is used to employ and maintain the fully developed

new technology, is consistent with the necessary and sufficient conditions for an optimal

solution. Proposition 2 states the result.

Proposition 2 (Full replacement condition in the social optimum)

Given optimization problem (9) and assuming U ′(x∞) −D′(0) 6= 0, full replacement of

the established technology by the new one in the long-run stationary state is consistent

with the necessary and sufficient conditions for a social optimum, if and only if

1 + D′(0)
U ′(x∞)−D′(0) ≥ λ+ (γ + ρ) exp[ρσ] , (17)
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where x∞ is given by x∞ = 1
λ+γ .

The proof is given in Appendix A.4.

Proposition 2 says that full replacement can only occur if the costs per unit of output of

the new technology in the full replacement stationary state UC∞T2
(right-hand side) are

smaller than or equal to the costs of the established technology UC∞T1
(left-hand side). As

there are no emissions in the full replacement stationary state, abatement effort is zero

and UC∞T1
only consists of the ‘pure’ labor costs plus the social costs, which stem from

the damage of the first marginal unit of emissions. In the common case that the first

marginal unit of emissions does not induce any environmental damage, i.e., D′(0) = 0,

UC∞T1
reduces to the ‘pure’ labor costs of production.7

For full replacement to occur, condition (15) must be violated while at the same time

condition (17) holds. A straightforward corollary from Propositions 1 and 2 is that the

established technology is only partially replaced by the new one, if conditions (15) and

(17) are simultaneously violated.

Corollary 1 (Partial replacement condition in the social optimum)

Given optimization problem (9) and U ′(x∞) − D′(0) 6= 0, partial replacement of the

established technology by the new one is optimal in the long-run if and only if

1 + a0 + 1−G(a0)
G′(a0) > λ+ (γ + ρ) exp[ρσ] > 1 + D′(0)

U ′(x∞)−D′(0) , (18)

where x∞ = 1
λ+γ and a0 is given by the unique solution of the implicit equation (16).

In sum, investment is not optimal if and only if the labor costs per unit of output of

the new technology, UCT2 = UC0
T2

= UC∞T2
, are higher than the labor costs per unit of

7 Condition (17) is not well defined if limx→x∞ U ′(x) = D′(0). However, full replacement will still occur
if, in addition, condition (15) holds, as the welfare gain of an additional unit of labor assigned to the
old technology vanishes while the shadow price of capital, which is the net present value of all future
welfare gains of an additional unit of capital, remains positive.
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output of the established technology in the no investment corner solution, UC0
T1
. If it is

optimal to invest, i.e., UCT2 < UC0
T1
, full replacement is optimal in the long run if and

only if, in addition, UCT2 ≤ UC∞T1
holds. Otherwise, UC∞T1

< UCT2 < UC0
T1
, and the

new technology will partly replace the established technology in the long run.

4 Competitive market equilibrium

We now consider a decentralized economy, in which a representative household and two

representative firms interact on competitive markets for labor, capital and energy, which

are cleared at all times.8 Due to the emission externality and the split time-preference

rates, the long-run stationary state in the decentralized economy falls, in general, short

of the social optimum. We show how the social optimum can be implemented by com-

plementing a standard emission tax with an investment subsidy.

4.1 Representative household

We assume the household to own the two firms and the total labor and capital endow-

ments of the economy. Thus, the household chooses between selling labor to the firms

at the market price of labor w and investing labor in the accumulation of capital k,

which the household rents to the firms at the market price of capital r. In addition, the

household buys energy x and may profit from the investment subsidy τi(t), paid per unit

of investment i. Choosing energy as numeraire, the following budget constraint has to

8 We present a decentralized market economy in which the households directly manufacture the capital
good in “home production” by means of labor and rent it to the firms. An alternative market economy
encompassing a third firm which produces the capital good by means of labor is conceivable. As long
as also the third firm operates under conditions of perfect competition this does not alter the market
equilibrium. A formal proof is available on request.
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hold at all times t:9

x(t) = w(t)
(
1− i(t)

)
− τi(t)i(t) + r(t)k(t) + π1(t) + π2(t) , (19)

where π1 and π2 denote the profits of firms 1 and 2. In addition, capital can be accumu-

lated according to equation (5). Assuming that the representative household maximizes

its intertemporal welfare, as given by equation (8a), implying that it applies a higher

rate of time preference ρp in the decentralized market regime than in the social decision

context, the household solves the following maximization problem:

max
i(t)

∫ ∞
0

[
U(x(t))−D(e(t))

]
exp[−ρpt] dt , (20)

subject to equations (19), (5), the inequality constraint

i(t) ≥ 0 , (21)

and the initial conditions (9c).

Thus, the present value Hamiltonian HH reads:

HH =
[
U(x(t))−D(e(t))

]
exp[−ρpt] + qk(t+ σ)i(t)− qk(t)γk(t)

+ qb(t)
[
w(t)

(
1− i(t)

)
− τi(t)i(t) + r(t)k(t)− p(t)x(t)

]
+ qi(t)i(t) ,

(22)

where qk denotes the costate variable or shadow price of the capital stock k, and qb

and qi denote the Kuhn-Tucker parameters for the (in)equality conditions (19) and (21).

Again, the strict concavity of the Hamiltonian HH (at least along the optimal path)

ensures a unique solution.

Assuming that the Hamiltonian HH is continuously differentiable with respect to the

9 Following the standard notation, τ > 0 denotes a tax and τ < 0 corresponds to a subsidy.
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control variable i, the following necessary conditions hold for an optimal solution:

qk(t+ σ) =
(
w(t) + τi(t)

)
U ′(x(t)) exp[−ρpt]− qi(t) , (23a)

q̇k(t) = qk(t)γ − r(t)U ′(x(t)) exp[−ρpt] , (23b)

qi(t) ≥ 0 , qi(t)i(t) = 0 . (23c)

Due to the strict concavity of the Hamiltonian, the necessary conditions (23a)–(23c)

are also sufficient if, in addition, a transversality condition analogous to condition (11h)

holds. Together with this transversality condition, condition (23b) can be unambiguously

solved to yield:

qk(t) = exp[γt]
∫ ∞
t

r(s)U ′(x(t)) exp[−(γ + ρp)s] ds . (24)

4.2 Firms

Taking prices as given, the firms maximize their profits in the competitive market equi-

librium. Firm 1 produces energy according to the first production technology, described

by equations (1) and (7b). Given a tax τe(t) per unit of emissions, its profit π1 at time

t is given by:

π1(t) = [1− w(t)(1 + a(t))− τe(t)
(
1−G(a(t))

)
] l1(t) . (25)

Firm 1 chooses both labor l1 and abatement effort a such as to maximize the net present

value of all future profits, which is equivalent to maximizing the profit π1 at all times t.

A necessary condition for profit maximization is

∂π1(t)
∂a(t) = [−w(t) + τe(t)G′(a(t))] l1(t) = 0 , (26)
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which is an implicit equation for the unique optimal abatement effort a?(t), as long as

l1(t) > 0 and τe(t) > 0. If l1(t) = 0 or τe(t) = 0, the optimal abatement effort a?(t) = 0,

as either no emissions have to be abated or emission abatement is a pure cost to the

firm.

Profit function π1(t) is linear in labor demand l1(t). Thus, the demand for l1(t) is given

by the following correspondence:

l1(t)



=∞ , if 1 > w(t)
(
1 + a(t)

)
+ τe(t)

(
1−G(a(t))

)
∈ [0,∞) , if 1 = w(t)

(
1 + a(t)

)
+ τe(t)

(
1−G(a(t))

)
= 0 , if 1 < w(t)

(
1 + a(t)

)
+ τe(t)

(
1−G(a(t))

) , (27)

where the optimal abatement effort a is given by the solution of the implicit equation

τe(t)G′(a(t)) = w(t) if l1(t) > 0, and a(t) = 0 if l1(t) = 0 or τe(t) = 0.

Firm 2 produces energy according to the second production technology, described by

equation (3). Neither the innovation subsidy τi nor the emission tax τe directly affects

firm 2. Thus, the profit π2 at time t equals:

π2(t) = [1− λw(t)− r(t)] k(t) , (28)

which is a linear function of k. As a consequence, the profit π2 is non-negative for any

k > 0, as long as the value of outputs exceeds the value of inputs. Analogously to firm 1,

firm 2 demands as much capital as possible together with λk units of labor, if the value

of the output exceeds the value of the inputs. Thus, the demand of firm 2 is given by
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the following correspondence:

k(t)



= ∞ ∧ l2(t) = λk(t) =∞ , if 1 > λw(t) + r(t)

∈ [0,∞) ∧ l2(t) = λk(t) , if 1 = λw(t) + r(t)

= 0 ∧ l2(t) = 0 , if 1 < λw(t) + r(t)

. (29)

4.3 Necessary and sufficient condition for the market equilibrium

At the market equilibrium, all markets clear. Again, the market solution may exhibit

two corner solutions, in which either the household never invests in capital, or the total

labor endowment is used to employ and maintain the capital stock. In the former, firm 2

is unable to operate. In the latter, firm 1 is driven out of the market. First, we analyze

the interior market equilibrium where both firms operate (i.e., l1(t), i(t) > 0). From

conditions (26), (27) and (29) we derive the following equations:

1 = τe(t)
[
G′(a(t))(1 + a(t)) + 1−G(a(t))

]
, (30)

w(t) =
1− τe(t)

(
1−G(a(t))

)
1 + a(t) , (31)

r(t) =
1 + a(t)− λ+ λτe(t)

(
1−G(a(t))

)
1 + a(t) . (32)

Inserting equation (31) into equation (23a) yields

[
1− τe(t)

(
1−G(a(t))

)
1 + a(t) + τi(t)

]
U ′(x(t)) exp[−ρpt] = qk(t+ σ) , (33)

which together with equation (30) determines the interior market equilibrium for a given

emission tax τe and investment subsidy τi. From equation (33) we see that the future

welfare gains of a marginal unit of capital (right-hand side) have to equal its current

welfare losses due to the costs of labor minus the investment subsidy (left-hand side).

Intuitively, the welfare costs of a marginal unit of capital are the lower, the higher is the
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environmental tax τe and the higher (i.e., the more negative) is the investment subsidy τi.

Comparing equation (33) with the corresponding condition (14) at the social optimum,

we see that, in general, the decentralized market equilibrium falls short of the social

optimum, as the welfare costs of investment in the former exceed the corresponding

costs in the latter. As a consequence, in the decentralized market solution without policy

intervention less favorable circumstances for investment in the new production technique

prevail than in the social optimum. To derive the optimal levels for the emission tax and

the investment subsidy, we first compare (30) with the corresponding condition (12) at

the social optimum. We derive for the optimal emission tax τ opte :

τe(t)opt = D′(e(t))
U ′(x(t)) . (34)

Second, inserting equation (24) into equation (33) and equation (13) into equation (14)

and comparing the resulting conditions, we derive for the optimal investment subsidy

τ opti :

τi(t)opt = −exp[−γ(t+σ)]
U ′(x(t))

∫ ∞
t+σ

U ′(x(s))(1 + a(s)− λ) +D′(e(s))λ
(
1−G(a(s))

)
1 + a(s)

× exp[−γs]
(

exp[−ρ(s− t)]− exp[−ρp(s− t)]
)
ds .

(35)

If the two instruments are set in such a way that the market equilibrium is identical to

the social optimum, τ opte is always positive (i.e., emissions are taxed) and τ opti is always

negative (i.e., investment is subsidized). The emission tax τ opte fully internalizes the

emission externality, while the investment subsidy τ opti corrects for the underinvestment

in capital due to the split time preference rates between the individual household and

the social planner.
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4.4 Conditions for investment and replacement

In the following, we derive conditions for investment and full replacement in the decen-

tralized economy. Again, we first derive conditions for which the no investment corner

solution is a market equilibrium.

Proposition 3 (No investment condition in the market equilibrium)

Given the household’s problem (20), the profit functions (25) and (28) of firm 1 and

firm 2, and the emission tax τe(t) and the investment subsidy τi(t), there is no investment

in the new technology in the market equilibrium, i.e., i(t) = 0 ∀ t if and only if the

following conditions hold:

• for τ0
e = 0 (implying a0 = 0)

1 ≤ λ+ (γ + ρp) exp[ρpσ] , (36a)

• for τ0
e > 0 (implying a0 > 0)

1 + a0 + 1−G(a0)
G′(a0) ≤ λ+

[
1 + τ0

i

τ0
eG
′(a0)

]
(γ + ρp) exp[ρpσ] , (36b)

where τ0
e = τe(t), τ0

i = τi(t) evaluated at the no investment stationary state and, if

τ0
e > 0, a0 is determined by the unique solution of the implicit equation:

1 = τ0
e

[
G′(a0)(1 + a0) + 1−G(a0)

]
. (37)

Condition (36b) for the market equilibrium is identical to the corresponding condition
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for the social optimum (15), if τ0
e and τ0

i are set as follows:

τ0
e = D′(e0)

U ′(x0) > 0 , (38a)

τ0
i =

D′(e0)
[
(1+a0−λ)G′(a0)+1−G(a0)

]
U ′(x0)

(
exp[−ρpσ]
γ + ρp

− exp[−ρσ]
γ + ρ

)
< 0, (38b)

where x0 = 1− a0 and e0 = (1− a0)(1−G(a0)).

The proof is given in Appendix A.5.

Conditions (36a) and (36b) display the unit costs of energy production of the estab-

lished and the new technology in the competitive market equilibrium. No investment is

a market equilibrium if the the established technology displays lower unit costs than the

new technology. In the unregulated market regime, the social costs of pollution are not

accounted for implying that firm 1 has no incentive to abate. UCT1 reduces to the ‘pure’

costs of production, and is, thus, lower than socially optimal. UCT2 displays the same

composition as at the social optimum. However, as it now depends on ρp > ρ, it exceeds

the socially optimal unit costs of energy of the new technology. Thus, in the unregulated

market economy higher UCT2 have to stay below lower UCT1 as compared to the social

optimum for the new technology to be innovated. The new technology is disadvantaged

in a twofold manner.

Imposing τ0
e enforces the incorporation of the social costs of emissions into the unit

costs of production of the established technology. Setting τ0
e equal to the ratio between

marginal damage from environmental degradation and marginal benefit from consump-

tion raises UCT1 to its socially optimal level. However, as is obvious from condition

(36b), the imposition of the emission tax is not sufficient for the market equilibrium to

resemble the social optimum. Lowering UCT2 to its socially optimal level can be achieved

by payment of an investment subsidy τ0
i .
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We now derive the conditions for which full replacement of the established by the new

technology is a market equilibrium in the long run.

Proposition 4 (Full replacement in the market equilibrium)

Given the household’s problem (20), the profit functions (25) and (28) of firm 1 and

firm 2, the emission tax τe(t) and the investment subsidy τi(t), full replacement of the

established technology by the new one in the long-run stationary state is consistent with

the necessary and sufficient conditions for a regulated market equilibrium, if and only if

the following condition holds:

• for τ0
e = 0 (implying a0 = 0)

1 ≥ λ+ (γ + ρp) exp[ρpσ] . (39a)

• for τ0
e > 0 (implying a0 > 0)

1 + τ∞e
1− τ∞e

≥ λ+
[
1 + τ∞i

1− τ∞e

]
(γ + ρp) exp[ρpσ] , (39b)

where τ∞e = τe(t), τ∞i = τi(t) evaluated at the long-run stationary state.

Condition (39b) for the market equilibrium is identical to the corresponding condition

for the social optimum (17), if τ∞e and τ∞i are set as follows:

τ∞e = D′(0)
U ′(x∞) ≥ 0 , (40)

τ∞i = U ′(x∞)(1− λ) +D′(0)λ
U ′(x∞)

(
exp[−ρpσ]
γ + ρp

− exp[−ρσ]
γ + ρ

)
< 0 , (41)

where x∞ = 1
λ+γ .

The proof is given in Appendix A.6
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The economic interpretation of conditions (39a) and (39b) is analogous to that of condi-

tions (36a) and (36b). Although the external effect from the emissions vanishes in case

the new technology fully replaces the old one, a positive emission tax has to be raised

if D′(0) > 0 for the market equilibrium to resemble the social optimum. For D′(0) = 0,

the optimal tax in the full replacement stationary state is given by τ∞e = 0. The optimal

investment subsidy τ∞i has to be negative in any case. For full replacement to occur in

the regulated market regime in the long run, condition (36b) has to be violated while

condition (39b) holds. However, if τe and τi are such that both conditions (36b) and

(39b) are simultaneously violated, the economy exhibits a market equilibrium where

both technologies are used. That is, partial replacement of the established by the new

technique is optimal. Note that partial replacement of the established technology by the

new one cannot occur in the unregulated market regime.

5 Discussion

Before discussing model assumptions and policy implications, we briefly summarize the

findings of our analysis. Recall that there are two energy technologies available in the

economy. The first gives rise to emissions which can be partly abated by an end-of-pipe

technology. The resulting net emissions impose a negative externality on society. The

second is clean but needs some time σ before investment becomes productive. Moreover,

the intertemporal valuation is deterred by the split between the private and social rates

of time preference. Whether the second technology (partly) replaces the first one hinges

on the exogenously given parameters and on whether and to what extent the emission

externality and the split of time preferences are corrected by an emission tax τe and an

investment subsidy τi. Figure 1 illustrates the findings.

In the unregulated market regime UCT1 always equals 1. Thus, the combination of the

unit costs of production of the two technologies associated with the investment and re-
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Figure 1: Full replacement, partial replacement, and no investment in the unregulated
market equilibrium and the social optimum.

placement conditions is always represented by a point on the UCT2 axis in Figure 1.

For example, point Aun denotes a situation where no investment in the new technology

takes place in the unregulated market regime, though full replacement would be socially

optimal (point Aso). Imposing an emission tax τe increases UCT1 (upwards shift in Fig-

ure 1). At the social optimum UCT1 equals 1 + a0 + 1−G(a0)
G′(a0) . The introduction of an

investment subsidy decreases UCT2 , shifting it to the left in Figure 1. In general, the so-

cial optimum in a market regime can only be implemented by combining environmental

and technology policies (moving from Aun to Aso). In the example, the sole imposition

of the emission tax would lead to a partial replacement of the established technology

(shift from Aun to Atax), and the sole imposition of the investment subsidy leaves the

economy in the no-investment stationary state (shift from Aun to Asub).

27



5.1 Model assumptions

In our analysis, we explore the welfare-theoretic implications of diverging social and

private time preferences for the time-lagged transition from a polluting established to a

new clean technology. Although our model considers important features of the energy

industry, we make a series of simplifying assumptions, which we shall briefly discuss in

the following.

In our model we consider a flow pollutant, whereas the accumulation of greenhouse

gases in the atmosphere causing the rise of global mean temperature is a stock-pollutant

problem. This simplification does not qualitatively affect our results. However, for a

stock pollutant, the split of time-preference rates would imply an underestimation of the

future damages from emissions today by the individual households compared to the social

planner. As a consequence, the unit costs of production of the established technology

would be further underestimated in the not optimally regulated market economy.

By modeling the technologies as linear and linear-limitational, we assume very specific

functional forms. The rationale is to account for the rigidities in energy conversion due to

technical and thermodynamic constraints. From a more technical point of view, it is the

linearity of the production functions which gives rise to the corner solutions we exploit to

derive the conditions of investment and partial and full replacement. As our focus is on

the substitution effects between (the established and the new) production technologies,

the analysis abstracts from substitution possibilities among different production factors

within the individual technologies. Taking a medium-term perspective with invariable

technologies, we abstract furthermore from some typical long-run problems. First, we

neglect endogenous technological change in the sense that new technologies emerge or

technologies become more efficient over time. Second, we do not consider fuel inputs

explicitly and, thus, implicitly assume the finiteness of conventional energy sources to be

non-binding over the relevant time horizon. Finally, we abstract from growth. Obviously,
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all these characteristics are important for successful climate-change mitigation strategies

but are not in the primary focus of our paper.

Finally, for the sake of a tractable model we abstract from a series of peculiarities rel-

evant in the economics of electric power systems. First, the energy industry is subject

to cyclical demand fluctuations on different time-scales (for example day/night-time or

summer/winter). As different energy technologies exhibit different turn-on/turn-off costs

and rigidities, a mix of energy technologies is in general preferable over ‘energy mono-

cultures’. Second, in contrast to our assumption of a perfectly competitive market, the

energy industry rather exhibits an oligopolistic market structure. As is well known from

the industrial organization literature, unregulated oligopolistic market regimes lead in

general to additional market failures, from which we abstract to concentrate on the

distortions imposed by emissions and diverging time-preference rates.

5.2 Policy implications

Although the analysis has been carried out in a stylized theoretical framework, direct

policy implications can be drawn which are relevant for the regulation of the energy

industry in particular, and optimal technological transitions in general.

First, our analysis shows that the time lag in the production of capital amplifies the

distortion created by the split of time preference rates. In Table 1 we illustrate the effect

of time-to-build and split time preference rates on the unit costs of the new technology

for different values of the labor costs λ and time lags σ.10 The first number displays the

steady-state unit costs in the social optimum, λ+(γ+ρ) exp[ρσ], the second number the

steady-state unit costs without investment subsidy, λ+ (γ + ρp) exp[ρpσ], and the third

number the difference in percent of the unit costs in the social optimum. We see that

10 The following parameters have been chosen: ρ = 0.03, ρp = 0.07, γ = 0.05 (all rates per year). While
the calculations are relatively insensitive to changes in γ, they are very sensitive to the split in time
preference rates ρp − ρ.
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without correcting for the split time preference rates the new production technology is

particularly disadvantaged (as a comparison to its unit costs in the social optimum) if

pure labor costs are small implying that the share of capital costs for total unit costs

is high, and if the gestation lag σ is large. For example, for λ = 0.1 which implies

that capital costs amount to 50% of total unit costs and a time lag σ = 6 years, a

difference in time preference rates of ρ = 0.03 per year and ρp = 0.07 per year results

in an overestimation of the unit costs by 44.4% compared to the unit costs in the social

optimum. As the energy sector exhibits both a high share of capital costs and substantial

construction lags, we expect it to be particularly affected. This expectation is confirmed

by Heinzel (2008), who conducts an analysis of the German power industry around 2015,

which shows that the distortion induced on the (imputed) unit costs of electricity at the

busbar of new coal, gas or nuclear power plants may amount to 1.0–18.5 ¤/MWh. In

addition, its elimination may have a decisive impact on the technology ranking.

λ 0.1 0.3 0.5 0.7 0.9
σ = 0 0.18, 0.22, 22.2% 0.38, 0.42, 10.5% 0.58, 0.62, 6.9% 0.78, 0.82, 5.1% 0.98, 1.02, 4.1%
σ = 2 0.18, 0.24, 28.7% 0.38, 0.44, 13.8% 0.58, 0.64, 9.1% 0.78, 0.84, 6.8% 0.98, 1.04, 5.4%
σ = 4 0.19, 0.26, 36.1% 0.39, 0.46, 17.6% 0.59, 0.66, 11.6% 0.79, 0.86, 8.7% 0.99, 1.06, 6.9%
σ = 6 0.20, 0.28, 44.4% 0.40, 0.48, 21.9% 0.60, 0.68, 14.6% 0.80, 0.88, 10.9% 1.00, 1.08, 8.7%
σ = 8 0.20, 0.31, 53.7% 0.40, 0.51, 27.0% 0.60, 0.71, 18.0% 0.80, 0.91, 13.5% 1.00, 1.11, 10.8%
σ = 10 0.21, 0.34, 64.3% 0.41, 0.54, 32.8% 0.61, 0.74, 22.0% 0.81, 0.94, 16.5% 1.01, 1.14, 13.3%

Table 1: Calculation of steady-state unit costs of the new technology in the social op-
timum (first number) and in the market economy without investment subsidy
(second number) for different gestation lags σ and pure labor costs λ. The third
number states the difference in percent of the unit costs of the social optimum.

Second, our analysis gives new theoretical support for policies that subsidize the deploy-

ment of energy technologies. According to our analysis, the level of the subsidy should, in

particular, depend on the difference in time-preference rates and the time lag in construc-

tion of the new technology. Thus, we are rather skeptical about the efficiency of policies

such as the German “Erneuerbare-Energien-Gesetz” (Renewable Energy Sources Act)

that subsidizes electricity from renewable energy technologies by feed-in tariffs oriented
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at the level of their unit costs of production.11

Finally, the analysis implies that for the transition towards a low-emission energy indus-

try the imposition of an environmental tax alone is in general not sufficient to implement

the socially optimal path.12 Rather, technology policy should complement environmental

policy. As a general result, this is not new, as there is a series of well established causes

for technology policy associated with the process of technological transformation (e.g.,

Jaffe et al. 2005). We derive this result without considering these cases. In our model, it

is the split of social and private time-preference rates combined with the time-consuming

nature of bringing a new technology into use which leads to the additional distortion.

Thus, the split time-preference rates constitute a general case for a welfare-enhancing

policy intervention, irrespective of the causes of the split. However, the intervention is to

be directed towards the source of the distortion. The split of the rates itself may only be

the direct point of reference, if and only if the underlying market failure cannot directly

or differently be remedied.

6 Conclusion

We study the implications of diverging social and private time-preference rates for the

transition from an established polluting to a new clean energy technology in a time-

lagged general equilibrium model. The two distortions in the model create in a mutually

reinforcing way less favorable circumstances for the introduction of the new technology,

and hence delay or even hinder structural change as compared to the social optimum.

The distortion created by the split of time-preference rates and amplified by time-to-build

feature of capital constitutes a general case for a welfare-enhancing policy intervention,

11 Feed-in tariffs amount to 457–624 ¤/MWh for photovoltaics, 55–91 for wind energy and 71.6–150
for geothermal energy, which is way off the 1.0–18.5 ¤/MWh computed by Heinzel (2008) for the
distortion induced by the split time-preference rates.

12 The equivalent result holds for the sole introduction of an emission permit trading scheme.
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irrespective of the causes of the split. The split of the rates itself may, however, be the

direct point of reference, if and only if the underlying market failure cannot directly or

differently be remedied. We show for this case that the socially optimal path may be

implemented if, in addition to standard environmental policy, an investment subsidy is

paid. Our results constructively contribute to the questions of whether and how environ-

mental policy should be complemented by further measures, such as technology policy.

In different respects, our analysis sticks to simplest cases. In particular, we avoid an

endogenous explanation of the split of the rates in the model and consider a flow pollu-

tant. While this is sufficient to clarify the basic relationships, it points to a number of

issues for further research. Thus far, there has been no systematic analysis of the causes

of the split of social and private time preferences, their quantitative contribution to the

split, and the specific policy implications with respect to each cause. Further theoretical

investigations should especially account for a richer representation of preferences.

Appendix

A.1 Concavity of the Hamiltonian (10)

We show that the Hamiltonian (10) is strictly and jointly concave in a, i and k whenever

the necessary condition (12) holds. We first introduce function F (a(t), i(t), k(t)) defined

as

F (a(t), i(t), k(t)) = U

(1−λk(t)−i(t)
1+a(t) +k(t)

)
−D

((
1−G(a(t))

)1−λk(t)−i(t)
1+a(t)

)
. (A.1)

Due to the linearity of the equation of motion (5) and the inequality conditions (9b), it

is sufficient to show that F is strictly and jointly concave in a, i and k whenever (12)

holds.13 F is strictly concave if the determinants of the leading principal minors of the

13 In the following, we refrain from stating the time argument explicitly.
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Hessian H of F are alternating in sign, starting with a negative sign. This is equivalent

to H being negative definite.

Denoting by F 0
yz the second partial derivatives of F with respect to y and z, given that

the necessary condition (12) holds, we obtain:

F 0
aa = 1− λk − i

(1 + a)2

{1− λk − i
(1 + a)2

[
U ′′(x)−D′′(e)[1−G(a) + (1 + a)G′(a)]2

]
+D′(e)G′′(a)

}
, (A.2a)

F 0
ai = 1− λk − i

(1 + a)3
{
U ′′(x)−D′′(e)[1−G(a)][1−G(a) + (1 + a)G′(a)]

}
, (A.2b)

F 0
ak = −1− λk − i

(1 + a)3
{
U ′′(x)(1− λ+ a) + λD′′(e)

× [1−G(a)][1−G(a) + (1 + a)G′(a)]
}
, (A.2c)

F 0
ii = 1

(1 + a)2

{
U ′′(x)−D′′(e)[1−G(a)]2

}
, (A.2d)

F 0
ik = − 1

(1 + a)2

{
U ′′(x)(1− λ+ a) + λD′′(e)[1−G(a)]2

}
, (A.2e)

F 0
kk = 1

(1 + a)2

{
U ′′(x)(1− λ+ a)2 − λ2D′′(e)[1−G(a)]2

}
. (A.2f)

Calculating the determinants of the leading principal minors of the Hessian H

det
[
H1] = F 0

aa < 0 , (A.3a)

det
[
H2] = F 0

aaF
0
ii − (F 0

ai)2 > 0 , (A.3b)

det
[
H3] = det[H] = −1− λk − i

(1 + a)4 U ′′(x)D′(e)D′′(e)G′′(a)[1−G(a)]2 < 0 , (A.3c)

reveals that H is negative definite. □

A.2 Optimal system dynamics

In the following, we discuss the optimal system dynamics of the optimization problem

(9) in case of the first and second regime:
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(i) In the no investment regime, i(t) = 0 ∀ t holds. As a consequence, also k(t) = 0 ∀ t,

and the system remains in a stationary state where the labor endowment is fully used up

by energy production via the established technology and by abatement: x0 = x0
1 = 1−a0,

e0 = (1−a0)(1−G(a0)), and a0 is given implicitly by equation (12), which yields a unique

solution as shown in the proof of Proposition 1.

(ii) If the new technology eventually fully replaces the established technology, then all

labor is used to employ and maintain the capital stock k. Thus, a(t) = l1(t) = 0, and we

derive from the labor constraint (6):

k(t) = 1− i(t)
λ

, (A.4)

which expresses capital k(t) in terms of investment i(t). Differentiating with respect to

time t and inserting into the equation of motion for the capital stock (5), yields the

following differential-difference equation, which governs the long-run system dynamics:

di(t)
dt

+ γi(t) + λi(t−σ) = γ . (A.5)

According to Theorem 3.3 (Bellman and Cooke 1963: p. 53), the solution is given by the

superposition of the solution to the homogeneous equation

di(t)
dt

+ γi(t) + λi(t−σ) = 0 , (A.6)

and a particular solution for the inhomogeneous equation. For di(t)/dt = 0 equation

(A.5) yields the non-trivial stationary state

i∞ = γ

λ+ γ
, k∞ = 1

λ+ γ
. (A.7)

According to Theorem 3.4 (Bellman and Cooke 1963: p. 55) the solution to the homoge-
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neous equation can be written as

∑
n

pn(t) exp[ynt] , (A.8)

where yn are the roots of the characteristic equation

h(y) ≡ y + γ + λ

γ
exp[−σy] , (A.9)

and pn(t) is a polynomial in t of degree less than the multiplicity of the characteristic

root yn.14 Thus, the general solution is given by

i(t) = i∞ +
∑
n

pn(t) exp[ynt] . (A.10)

It can be shown that the characteristic equation (A.9) has at most two negative real

roots and an infinite number of conjugate pairs of complex roots of which only a finite

number have positive real part (Proposition 2 in Winkler et al. 2005). All summands

which correspond to characteristic roots with negative real parts converge to zero in the

long-run. There may be one summand corresponding to a pair of purely imaginary roots

(which, of course, then collapse to one root), which oscillates around 0.15 All summands

corresponding to characteristic roots with positive real part are diverging oscillatory for

t→∞.

While diverging summands are solutions to the differential-difference equation (A.5),

they are no solutions to the system dynamics of the second regime. This is because

investment is bounded to 1 by the labor constraint. All diverging solutions are not

feasible, as they eventually violate the labor constraint. This implies directly that also

the capital stock cannot diverge in the second regime. Moreover, all diverging solutions do
14 It is easy to verify that there is at most one multiple root corresponding to y = −(γ + 1/σ) which

only occurs when λ = (γ/σ) exp[−(1 + σγ)].
15 For this to hold, there has to exist b ∈ [0, λ] which simultaneously solves γ = −λ cos[σb] and b =
λ sin[σb].
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not only violate the labor constraint, but also the non-negativity constraint i(t) ≥ 0. To

see this, consider the pair of summands corresponding to the pair of complex conjugate

roots with the highest positive real part, say y = a± ib, a, b > 0. These two summands

can be written as:

K1 exp[at] cos[bt+K2] , (A.11)

with two real constants K1 and K2. As the cosine is at times positive and at times

negative, we have a divergent oscillation, which implies that investment not only diverges

over time but also switches from periods in which it is positive to periods in which it

is negative. In most economic models, negative investment and capital stocks have no

meaningful interpretation.

In summary, the optimal solution converges to the stationary state if there exists no

complex root with vanishing real part, and to a limit cycle around the stationary state

otherwise. As the latter case can only hold accidentally for certain exogenous parameter

constellations, we restrict attention to the case of convergence to the stationary state

(A.7).

A.3 Proof of Proposition 1

Assume that it is optimal not to invest at t = 0, which implies that it is optimal not to

invest at all times t. As a consequence, the economy will remain in the no investment

corner solution where no capital is accumulated. Hence, i(t) = 0 and qi(t) ≥ 0 ∀ t. All

energy is solely produced by the established production technique which implies that

x0 = x0
1 = l01 = 1 − a0, x0

2 = 0, > 0 and qi = 0. The optimal abatement effort a0 is

determined by equation (12) by inserting x0 = 1 − a0 and e0 = x0(1 − G(a0)) which

yields equation (16). To see that there exists a unique solution for a0 we define the

following functions which correspond to the left-hand side and the right-hand side of
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equation (16):

lhs(a0) = U ′(1− a0) , (A.12a)

rhs(a0) = D′
(
(1− a0)(1−G(a0))

)[
1−G(a0) + (1 + a0)G′(a0)

]
. (A.12b)

Uniqueness is guaranteed by lhs′(a0) > 0 and rhs′(a0) < 0. Existence holds as

lim
a0→0

lhs(a0) = U ′(1) ∈ (0,∞) , lim
a0→1

lhs(a0) = +∞ ,

lim
a0→0

rhs(a0) = +∞ , lim
a0→1

rhs(a0) = 0 .

In the corner solution i(t) = 0, we derive the shadow price of capital q0
k(t) by solving the

integral equation (13):

q0
k(t) = D′(e0)

[(
1 + a0 − λ

)
G′(a0) + 1−G(a0)

] exp[−ρt]
γ + ρ

. (A.13)

Inserting equation (12) and q0
k(t+σ) into (14) yields the following necessary and sufficient

condition for the corner solution to be optimal:

D′(e0)G′(a0) exp[−ρt] = D′(e0)
[
(1+a0−λ)G′(a0)+1−G(a0)

]exp[−ρ(t+ σ)]
γ + ρ

+qi(t) .

(A.14)

Taking into account that qi(t) ≥ 0, dividing by D′(e0)G′(a0) exp[−ρt] and rearranging

terms yields condition (15). Note that condition (15) is independent of t. This implies

that it is optimal not to invest at all times t, if it is optimal not to invest at time t = 0.

Thus, if condition (15) holds, the optimal solution of the optimization problem (9) is to

remain in the no investment corner solution forever. □
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A.4 Proof of Proposition 2

Assume that it is optimal in the long-run stationary state to use the total labor endow-

ment to employ and maintain the capital stock for the new technology, i.e., x∞2 = 1
λ+γ .

Then, all output is solely produced by the new technology, i.e., x∞ = x∞2 , x∞1 = l∞1 = 0.

In addition, no emissions are produced and have to be abated implying e∞ = 0 and

a∞ = 0. Solving the integral equation (13) yields:

q∞k (t) = exp[−ρt]
γ + ρ

[
U ′(x∞)(1− λ) + λ

(
D′(0)− q∞

i

)]
. (A.15)

Inserting q∞k (t+ σ) into equation (14), and taking into account that q∞
i
≥ 0, we derive

condition (17). □

A.5 Proof of Proposition 3

Assume that no investment at all times t is a market equilibrium. Then, no capital

is accumulated and i(t) = 0 and qi(t) ≥ 0 ∀ t. All energy is solely produced by the

established production technique (i.e., x0 = x0
1 = l01 = 1 − a0, x0

2 = 0). We know from

conditions (27) and (29):

w(t) =
1− τ0

e

(
1−G(a0)

)
1 + a0 , (A.16a)

r(t) >
1 + a0 − λ

[
1− τ0

e

(
1−G(a0)

)]
1 + a0 . (A.16b)

Equation (A.20) determines the profit maximizing abatement effort a0 of firm 1 if τ0
e > 0

(otherwise the optimal a0 = 0). Inserting condition (A.16b) in equation (23b) and solving

the differential equation, yields the following inequality for the shadow price of capital:

q0
k(t) ≥

1 + a0 − λ
[
1− τ0

e

(
1−G(a0)

)]
(1 + a0)(γ + ρp)

U ′(x0) exp[−ρpt] . (A.17)
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Inserting equation (A.16a) and q0
k into equation (23a), and taking into account that

qi(t) ≥ 0, we derive:

(
w(t) + τ0

i

)
U ′(x0) exp[−ρpt] ≥

1 + a0 − λ
[
1− τ0

e

(
1−G(a0)

)]
(1 + a0)(γ + ρp)

. (A.18)

Dividing by U ′(x0) exp[−ρpt] and rearranging terms yields that in the regulated market

equilibrium there is no investment in the new technology, if and only if:

1 + a0

1− τ0
e

(
1−G(a0)

) ≤ λ+
[
1 + τ0

i (1 + a0)
1− τ0

e

(
1−G(a0)

)] (γ + ρp) exp[ρpσ] . (A.19)

If a0 = τ0
e = τ0

i = 0, condition (A.19) reduces to (36a). If τ0
e > 0, equation (26) holds

and a0 is given by the following implicit equation:

1 = τ0
e

[
G′(a0)(1 + a0) + 1−G(a0)

]
. (A.20)

For an exogenously given τ0
e the right-hand side of equation (A.20) is strictly decreasing.

Moreover, it approaches +∞ for a0 → 0 and 0 for a0 → 1. This implies that there exists

a unique solution for a0 whenever τ0
e > 0. Inserting into condition (A.19) yields (36b).

By setting τ0
e = D′(e0)/U ′(x0), condition (A.20) which determines the profit maximizing

abatement effort a0 becomes identical to equation (16) which determines the socially

optimal abatement level. Again, there exists a unique solution for a0 as shown in the

proof of Proposition 1. Furthermore, inserting τ0
e and τ0

i from equations (38a) and (38b)

into condition (36b) yields (after some tedious calculations) the no investment condition

in the social optimum (15). □
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A.6 Proof of Proposition 4

Assume that using the total labor endowment to employ and maintain the capital stock

for the new technology in the long-run stationary state is a market equilibrium, i.e.,

l∞1 = 0, i∞ > 0 and q∞i = 0. Then, all output is solely produced by the new technology,

i.e., x∞ = x∞2 = 1
λ+γ and x∞1 = l∞1 = 0. In addition, no emissions are produced and

have to be abated and, thus, e∞ = 0 and a∞ = 0. For this case, we know from demand

correspondences (27) and (29) of firm 1 and firm 2:

w(t) ≤ 1− τe(t) , (A.21a)

r(t) = 1− λw(t) . (A.21b)

Inserting equation (A.21b) into equation (24), yields for the the shadow price of capital:

q∞k (t) = 1− λw∞

γ + ρp
U ′(x∞) exp[−ρpt] , (A.22)

where w∞ = w(t) is evaluated at the full replacement stationary state and, hence,

constant.

Inserting q∞k and inequality (A.21a) into equation (23a), and taking into account that

qi(t) = 0, we derive the following condition:

(1− τ∞e )
(
λ+ (γ + ρp) exp[ρpσ]

)
≤ 1− τ∞i (γ + ρp) exp[ρpσ] . (A.23)

Dividing by (1−τ∞e ) and rearranging terms yields condition (39b). Setting τ∞e = τ∞i = 0,

we derive condition (39a).

Furthermore, inserting τ∞e and τ∞i from equations (40) and (41) into condition (39b)

yields (after some tedious calculations) the full replacement condition in the social opti-

mum (17). □
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